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A number of components of the error for an internal eigenvalue are not
confined to a neighborhood of the interface between the subdomains. This
undesirable behavior is controlled by Jacobi-Davidson with deflation.
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The Jacobi-Davidson method [3] reduces a large linear eigenvalue problem g 2 1 S . Thetb(?EaV'OTIOf eaCh.t )

A A A A i i E ne of the proposed mechanisms component (like coll, capacitor, ...
to a small one by prolectl_ng |_t on an appropriate Iqw dimensional subspacg. ! : o e e ey i desoribed by ane or more equalions.
The heart of the method lies in how the subspace is expanded: an expansion gLsr - resonant absorption of magnetic Alfven waves. Together with Kirchhoff's law this gives a
vector is computed from the so-called correction equation. s < Analysis of these magnetohydrodynamic waves coupled system of equations for the behavior of
However the correction equation in itself poses a large linear problem, with WL P in a coronal loop needs the solution of very large the whole circuit.
size equal to the size of the originating large eigenvalue problem. Because of generalized eigensystems.
this, most of the computational work of the Jacobi-Davidson method arises osl StedB0? . oo |
from performing (approximate) solves for the correction equation. ' @@@@@@@@@@@e@e@em}e@@@ooooooooo ﬁ Stability of the circuit is related to the
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This poster presents research [2, 1] about the question how a precon- @m@%%@@@@@@@@%@@@@@ Stru Ctu ral e|genfrequenc|ef of this coupled
0ng . 2n3 a o (2]52] system.
ditioner based on a domain decomposition technique can be incorporated e 9 T o 5 e 50 P y

in the Jacobi-Davidson method to make it more efficient for PDE type of
eigenvalue problems. The domain decomposition technique is an (locally)
optimized additive Schwarz method based on earlier work from Tang [6]
and Tan & Borsboom [4, 5] for linear systems.

In contrast to ordinary linear systems, the operator in the correction equation
involves the matrix of the large eigenvalue problem, shifted by an approx-
imate eigenvalue. Because of this, the operator in the correction equation
is indefinite, for an internal eigenvalue even highly indefinite. Therefore, in
case of the correction equation further investigation of this domain decom-
position approach is needed. The situation is analyzed for constant coeffi-
cients. It turns out that the eigenvalue plays a critical role.

In many applications the eigenvalue problems exhibit coefficients that
vary over the physical domain. For such a situation a strategy may be ap-
plied that is based on locally frozen coefficients. This strategy only requires
knowledge of the constant coefficients case. As for the optimization only
local behavior is taken into account, a generalization of the domain decom-
position method to more complicated geometries is straightforward.

Once a preconditioner based on domain decomposition is constructed for 04 entific discplines. In most situations the object of .
the iterative computation of solutions to the correction equation (the “inner- & G study is described by some partial differential equas m Od el I | ng
loop”), one may take more advantage of it by considering the relationship oas| | o opumized wih respectto o and od tion. High resolution discretizations lead to (general
between the “innerloop” and “outerloop” (the iterative computation of solu- O optimized with respect to a, B and y ized) eigenvalue problems of very high dimension.
tions to the eigenvalue problem with Jacobi-Davidson itself). 0k L RATEETIIT031 Conventional dense methods (like the QR-algorithm
. H++”H ! for the standard and the QZ-algorithm for the gens-
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The correction equation describes an (inexact) Newton step. This » » value problem il @@
The analysis for the determination of optimal coupling parameters was per- special linear system has equal dimensions as the original eigen-* BPt= Euu* Ax = \x 08k ®
formed for a two subdomain decomposition. However, the results of this value problem. For not too low dimensional problems, most com- WithP =T — M u _ _ _ _ _
analysis also yield accurate estimates of optimal coupling parameters for putational work of the Jacobi-Davidson method is therefore in this in each iteration step Jacobi-Davidson [3]: 06r |
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more than two subdomains, in contrast to Neumann-Dirichlet coupling. ingredient. However, Jacobi-Davidson is flexible and the correc 0al g0 -
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More coupling parameters are introduced by inclusion of cross coupling,
i.e. coupling parallel to the interface together with coupling perpendicular
to the interface. This leads to stronger reduction of the errors.
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For the computation of a solutign, x) to the standard eigen-
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| imate solutions of the correction equation obtained with a precons .l e cace i |
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eigenvalue which makes it indefinite. This property prevents in gen- e computingu = V s, -04r EDDDDDDDD : A
eral a succesfull application of an algebraic preconditioning tech- . -06F .

e nique (like ILU) to the correction equation, where the columns oV form an orthonormal basis for the _ o local optimizaton wihl,
A preconditioner based on domain decomposition might be suitable. search subspace, ~o8r 42 : o 22::2:?222: o .::2 ]
’ Domain decomposition enables a subdivision of a large problem correctsthe approximate eigenvectarby computing a cor- -1 1

into smaller (coupled) subproblems. The kind of applications (see rection vectott from thecorrection equation ‘ ‘ ‘ ‘ ‘ ‘

3 top-right corner) suit well in such an approach: they are described 0 10 20 30 40 50 60
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by partial differential equations on physical domains. Decomposi-

tion into smaller subproblems is also necessary as the correspondL@g”C(,mOn of the domain decomposition method needs an adaptia

gof eigenvector equation:

problems are of very large scale. Because of the indefiniteness fthe linear system. In the Jacobi-Davidson method this can be arranged S°lve (@pproximately)A. — AT) x =0 T YA vrea-a1

ther investigation of the domain decomposition method is neededfor the eigenvalue problem, the correction equation or the preconditio-
ing step. It turned out that once a preconditioner is constructed for t

second option, even better (parallel) performance can be obtained IF)’L
application of the same preconditioner to the first option.

for the correction equation.

correction equation:
he solve (approximatelyP (A —0I)Pt = —r

precondition equation: | ) M~ A -0l

solve (approximatelyM y = z ‘

tlu PBPt=r
WithPEI—%,BEA—QIandI‘E —Bu,
expandsthe search subspace with the orthogonal component
(I = V' V¥) t of the correction vecto.
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example of enhancement in one direction . : . For the computation of a solution to a linear systBm = d this optimized < st Gaeecl |
Let the PDE be defined on some dom@irby the operator’ (a%) + b2 with Tan & Borsboom '93: ! Tang "92: 3 Schwarz method [4,5] s
constantz andb. Discretization by finite differences results in a grid covering the lc : T, - o ! enhanceghe linear system:

domain. The discretized operator may be represented for instance by the (coupling)
stencil

Now, the grid is decomposed into subgrids that cover the nonoverlapping subdo-
mains(2; and(2,. The differences between the approach of Tang [6] and Tan &
Borsboom [4,5] are indicated in the pictures on the right. It can be observed that
in Tang’s approach the subgrids have one gridpoint in common at the interface be-
tween the subdomains. To prevent that for this gridpoint a splitting of the discretized
operator (see thetenci) has to be made Tan and Borsboom refined the concept by
defining a double set of additional gridpoints near the interface.

On the right, for the two subdomain case, this enhancememtyf= d is pre-
sented in an algebraic way. Thiie part corresponds to the preconditioidr the
redpart toN. Coupling between the unknowpsandy, near the interface and cor-
responding additional unknowggandy, (at the ") is defined by extra equations
independently of the discretization via the coupling matrix

stencil:

By=d — Bcy=d, 1)

splits B = M — N such that the precondition®d is invertible locally on
subdomains,

computesa solution of (1) by
Richardson iteratiog*") = y{) + M~! ((_1 - B¢ X(i))
or
a more general Krylov method wit,, (M‘1 B, M (_1) =
span(M~'d, M~'BoM™'d,..., (M Bo)"" M g) ,

tunes C for “minimal” spectral radius oM ' N. Then the errors for the
Richardson iteration are damped “as much as possibléVfasB. = I —
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Even better performance can be obtained with the preconditioner because of
the nested structure of the Jacobi-Davidson method. This aspect is not trivial
for low accurate solutions of the correction equation and a large number of
subdomains. Such a situation may occur if a large scale eigenvalue problem

Local optimization appears to be an efficient strategy for problems with
variable coefficients. Such a strategy uses results from the analysis for the
model problem with constant coefficients. Several variants have been tested.
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Eigenvectors of the error propagation
matrixM ! N for the two-dimensional
two subdomain case. In thedirec-
tion, the direction perpendicular to the
interface between the subdomains, it
typically behaves harmonic (top pic-
ture) or exponential (right picture).

lor and exponential behavior. The coupling of the components on the two subdomains for

matrix M~' N breaks up into layered one-dimensional problems. The one-dimensional

problems are coupled by eigenvectors of a one-dimensional advection-diffusion operator.

Now, for the coupling matrix_' any linear combination of powers of this one-dimensional

advection-diffusion operator can be taken. (With simple coupling we mean only zero pow-

ers, with stronger coupling also first powers.) This is used for the minimization of the

absolute values of the eigenvalues that correspond to (a collection of) eigenvectors of the
error propagation matri’v@ ' IN.

Eigenvalues and corresponding eigenvectors can efficiently be computed on
more complicated geometries, with Jacobi-Davidson in combination with
the preconditioner based on domain decomposition.
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