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coupled system of equations for the behavior ofAnalysis of these magnetohydrodynamic waves
in a coronal loop needs the solution of very large

One of the proposed mechanisms

to explain the heating of the solar corona is

Menno Genseberger Gerard Sleijpen Henk van der Vorst

Abstract

The Jacobi-Davidson method [3] reduces a large linear eigenvalue problem
to a small one by projecting it on an appropriate low dimensional subspace.
The heart of the method lies in how the subspace is expanded: an expansion
vector is computed from the so-called correction equation.
However the correction equation in itself poses a large linear problem, with
size equal to the size of the originating large eigenvalue problem. Because of
this, most of the computational work of the Jacobi-Davidson method arises
from performing (approximate) solves for the correction equation.

This poster presents research [2, 1] about the question how a precon-
ditioner based on a domain decomposition technique can be incorporated
in the Jacobi-Davidson method to make it more efficient for PDE type of
eigenvalue problems. The domain decomposition technique is an (locally)
optimized additive Schwarz method based on earlier work from Tang [6]
and Tan & Borsboom [4, 5] for linear systems.
In contrast to ordinary linear systems, the operator in the correction equation
involves the matrix of the large eigenvalue problem, shifted by an approx-
imate eigenvalue. Because of this, the operator in the correction equation
is indefinite, for an internal eigenvalue even highly indefinite. Therefore, in
case of the correction equation further investigation of this domain decom-
position approach is needed. The situation is analyzed for constant coeffi-
cients. It turns out that the eigenvalue plays a critical role.

In many applications the eigenvalue problems exhibit coefficients that
vary over the physical domain. For such a situation a strategy may be ap-
plied that is based on locally frozen coefficients. This strategy only requires
knowledge of the constant coefficients case. As for the optimization only
local behavior is taken into account, a generalization of the domain decom-
position method to more complicated geometries is straightforward.
Once a preconditioner based on domain decomposition is constructed for
the iterative computation of solutions to the correction equation (the “inner-
loop”), one may take more advantage of it by considering the relationship
between the “innerloop” and “outerloop” (the iterative computation of solu-
tions to the eigenvalue problem with Jacobi-Davidson itself).
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eigenfrequencies of this coupled

eigenvector equation:
solve (approximately)(A� � I ) x = 0

correction equation:
solve (approximately)P (A� � I )Pt = �r

precondition equation:
solve (approximately)My = z
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Eigenvectors of the error propagation
matrixM�1

N for the two-dimensional
two subdomain case. In thex direc-
tion, the direction perpendicular to the
interface between the subdomains, it
typically behaves harmonic (top pic-
ture) or exponential (right picture).

Decomposition of a two-dimensional domain
 into
two subdomains
1 and
2. The bullets (�) represent
the grid points of the original grid. The circles (o) re-
present the extra grid points at the internal boundary.
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For the determination of optimal coupling matricesC for a general problem the spec-
trum of the error propagation matrixM�1

N is analyzed for a two-dimensional associated
model eigenvalue problem. The results of this analysis yield (nearly) optimalC for the gen-
eral two-dimensional case with more than two subdomains, variable coefficients and com-
plicated geometries. The model eigenvalue problem is defined by an advection-diffusion
operator with constant coefficients and the domain is decomposed in two subdomains.
After discretization, the advection-diffusion operator with constant coefficients can be writ-
ten as a tensor product of two one-dimensional advection-diffusion operators. This tensor
product notation facilitates the analysis: the situation in two dimensions can be seen as
layered one-dimensional situations. In the one-dimensional situation for the component on
a subdomain of an eigenvector ofM�1

N two typical situations occur: harmonic behav-
ior and exponential behavior. The coupling of the components on the two subdomains for
an eigenvector is expressed by the absolute value of the corresponding eigenvalue. Only
in this expression the coupling matrixC can be found. For exponential behavior neces-
sary estimations can be made without specific knowledge of the subdomain size. In the
two-dimensional situation the problem of finding all eigenvectors of the error propagation
matrixM�1

N breaks up into layered one-dimensional problems. The one-dimensional
problems are coupled by eigenvectors of a one-dimensional advection-diffusion operator.
Now, for the coupling matrixC any linear combination of powers of this one-dimensional
advection-diffusion operator can be taken. (With simple coupling we mean only zero pow-
ers, with stronger coupling also first powers.) This is used for the minimization of the
absolute values of the eigenvalues that correspond to (a collection of) eigenvectors of the

error propagation matrixM�1
N.

For the computation of a solution to a linear systemBy = d this optimized
Schwarz method [4,5]

enhancesthe linear system:

By = d �! BC y
�

= d; (1)

splitsBC =M�N such that the preconditionerM is invertible locally on
subdomains,

computesa solution of (1) by

X Richardson iterationy
�

(i+1)
= y
�

(i)
+M�1

�
d�BC y

�

(i)
�

X or

X a more general Krylov method withKm
�
M�1BC ;M

�1 d
�
=

span
�
M�1 d; M�1BCM

�1 d; : : : ;
�
M�1BC

�m�1
M�1 d

�
;

tunesC for “minimal” spectral radius ofM�1N. Then the errors for the
Richardson iteration are damped “as much as possible” (asM�1BC = I�

M�1N each Richardson iteration step the error is amplified by theerror
propagation matrixM�1N, general Krylov methods perform better since

they accelerate the Richardson iteration).

For the computation of a solution(�;x) to the standard eigen-
value problem

Ax = �x

in each iteration step Jacobi-Davidson [3]:

extracts an approximate solution(�;u) from a search sub-
space by

� constructingH � V
�

AV,

� solvingH s = � s, and

� computingu = V s,

where the columns ofV form an orthonormal basis for the
search subspace,

corrects the approximate eigenvectoru by computing a cor-
rection vectort from thecorrection equation:

t ? u; PBPt = r

with P � I�
uu�

u�u ,B � A� � I andr � �Bu,

expandsthe search subspace with the orthogonal component
(I�VV

�) t of the correction vectort.

Application of the domain decomposition method needs an adaption of
the linear system. In the Jacobi-Davidson method this can be arranged
for the eigenvalue problem, the correction equation or the precondition-
ing step. It turned out that once a preconditioner is constructed for the
second option, even better (parallel) performance can be obtained by
application of the same preconditioner to the first option.

left preconditioning withM � BC :

PM
�1
BC Pt

�

= PM
�1
r;
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Tan & Borsboom ’93: Tang ’92:

By = d�!BC y
�

= d :
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example of enhancement in one direction
Let the PDE be defined on some domain
 by the operator@
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constanta andb. Discretization by finite differences results in a grid covering the
domain. The discretized operator may be represented for instance by the (coupling)
stencil
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Now, the grid is decomposed into subgrids that cover the nonoverlapping subdo-
mains
1 and
2. The differences between the approach of Tang [6] and Tan &
Borsboom [4,5] are indicated in the pictures on the right. It can be observed that
in Tang’s approach the subgrids have one gridpoint in common at the interface be-
tween the subdomains. To prevent that for this gridpoint a splitting of the discretized
operator (see thestencil) has to be made Tan and Borsboom refined the concept by
defining a double set of additional gridpoints near the interface.
On the right, for the two subdomain case, this enhancement ofBy = d is pre-
sented in an algebraic way. Thebluepart corresponds to the preconditionerM, the
redpart toN. Coupling between the unknownsy` andyr near the interface and cor-
responding additional unknownsey` andeyr (at the “�”) is defined by extra equations
independently of the discretization via the coupling matrix
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the Jacobi-Davidson method

Eigenvalue problems show up in a diversity of sci-
entific discplines. In most situations the object of
study is described by some partial differential equa-
tion. High resolution discretizations lead to (general-
ized) eigenvalue problems of very high dimension.

Conventional dense methods (like the QR-algorithm
for the standard and the QZ-algorithm for the gen-
eralized eigenvalue problem) can not cope well with
such high dimensions. In such a situation one may
address a subspace method. Amongst these subspace
methods the Jacobi-Davidson method offers many ad-
vantages and flexibility, amongst others good precon-
ditioners as domain decomposition can be fully ex-
ploited.

The correction equation describes an (inexact) Newton step. This
special linear system has equal dimensions as the original eigen-
value problem. For not too low dimensional problems, most com-
putational work of the Jacobi-Davidson method is therefore in this
ingredient. However, Jacobi-Davidson is flexible and the correc-
tion equation doesn’t need to be solved in high precision. Approx-
imate solutions of the correction equation obtained with a precon-
ditioned iterative solver may already result in fast convergence of
Jacobi-Davidson.

The matrix in the correction equation is shifted by an approximate
eigenvalue which makes it indefinite. This property prevents in gen-
eral a succesfull application of an algebraic preconditioning tech-
nique (like ILU) to the correction equation.
A preconditioner based on domain decomposition might be suitable.
Domain decomposition enables a subdivision of a large problem
into smaller (coupled) subproblems. The kind of applications (see
top-right corner) suit well in such an approach: they are described
by partial differential equations on physical domains. Decomposi-
tion into smaller subproblems is also necessary as the corresponding
problems are of very large scale. Because of the indefiniteness fur-
ther investigation of the domain decomposition method is needed

for the correction equation.
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More coupling parameters are introduced by inclusion of cross coupling,
i.e. coupling parallel to the interface together with coupling perpendicular
to the interface. This leads to stronger reduction of the errors.

The analysis for the determination of optimal coupling parameters was per-
formed for a two subdomain decomposition. However, the results of this
analysis also yield accurate estimates of optimal coupling parameters for
more than two subdomains, in contrast to Neumann-Dirichlet coupling.

A number of components of the error for an internal eigenvalue are not
confined to a neighborhood of the interface between the subdomains. This
undesirable behavior is controlled by Jacobi-Davidson with deflation.
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Local optimization appears to be an efficient strategy for problems with
variable coefficients. Such a strategy uses results from the analysis for the
model problem with constant coefficients. Several variants have been tested.

Even better performance can be obtained with the preconditioner because of
the nested structure of the Jacobi-Davidson method. This aspect is not trivial
for low accurate solutions of the correction equation and a large number of
subdomains. Such a situation may occur if a large scale eigenvalue problem
needs a massively parallel treatment.

Eigenvalues and corresponding eigenvectors can efficiently be computed on
more complicated geometries, with Jacobi-Davidson in combination with
the preconditioner based on domain decomposition.

system.

Ax=  Bx
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