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Are the steady circulation patters in oceans stable?
Jacobi-Davidson is a valuable tool.

A large example

Jacobi-Davidson can also be used for interior eigenvalues and for higher order poly-
nomial eigenproblems. As an illustration, we discuss the computation of an interior
eigenvalue ofA0x + �A1x + �

2
A2x = 0. The quadratic eigenproblem comes

from modelling sound waves in a room with a wall with sound-absorbing ma-
terial. For the selected finite element discretization the matricesAi are of
size274 625. Diagonal preconditioner was used. On aCray T3D with 64
processors, it took 93.4 seconds with computational speed of 1 Gflops
to compute the wanted eigenvalue with a relative residual accuracy of

10�6. At peak performance (9.6 Gflops),oneshift and invert step
would take more than 10 minutes, the QZ-algorithm would take
more than a month (if it would fit in the memory of the com-
puter). The algorithm scales well as, for matrices of size

136 161, is shown by the table.

Number of processors wall clock time
16 167.7
32 82.5
64 41.5

HPCN2000, Amsterdam, May 8, 2000

. . . reduced models can be exploited . . .

EXTRACT Petrov-Galerkin

Find u 2 Vk = fv1; : : : ;vkg such that

r = (A� �B)u ? Wk = fw1; : : : ;wkg:

(�;u) is thePetrov pair w.r.t. thesearchsubspaceVk and thetestsubsp.Wk.

In practice. k � n

With bothVk � [v1 jv2 j : : : jvk ] andWk � [w1 jw2 j : : : jwk ] orthonormal,
and u = Vk y, we have a low dimensional generalized eigenproblem

(W�
k
AVk � �W�
k
BVk) y = 0:

Apply QZ for the low dimensional reduced matricesW�
k
AVk andW�
k
BVk.

EXPAND Inexact Newton

Compute theresidual vectorr and an auxiliary vectorz = ez=kezk2 where

r � Au � �Bu and ez � �Au + �Bu:

Find an approximate solutionet ? u of the Jacobi-Davidson correction equation

u
�

t = 0 and (I� z z
�) (A� �B) (I� uu
�) t = �r

ExpandVk with et: orthonormalizeet w.r.t.Vk to vk+1.
ExpandWk with es � �Aet + �Bet: orthonormalizees w.r.t.Wk towk+1.

The Jacobi-Davidson corr. eq. is a Jacobian system of a Newton process.
Therefore: quadratic convergence when solved exactly; but, due to the subspace
acceleration, also fast convergence with inexact solutions.

In practice.Any linear solver can be used to solve the correction
equation. Complication: the correction equation is singular in

C n. However: the correction equation is non-singular fromu? to

u approximates the singular
vector. The projections restrict
to a subspace on which the sys-
tem is well-conditioned.z

?. Preconditioned iterative Krylov subspace solvers, as precondi-
tioned GMRES, are very suitable for such situations: all iterates are orthogonal tou if that is
the case for the initial guess. Often already a few steps lead to fast convergence.

Preconditioners

If M is a preconditioner forA��B, thenMp is a preconditioner forAp, where

Mp � (I� z z�)M (I� uu�) and Ap � (I� z z�) (A� �B) (I � uu�) :

The action of the preconditionedoperatorM�1
p

Ap on vectorss can be efficiently
incorporated in solvers as GMRES:

First solvey fromMy = z and compute� � u�y. Only once per linear solve!

Then, in each GMRES step, computet �M�1
p

Aps as

� s (A� �B)s

� SolveMs0 = s

� t s0 � y(��1(u�s0))

Only one
(skew)
projection!

Note thatM can also be used for other nearby�. It pays to make a good pre-
conditioner.

Conventional Approaches

I. The QZ-algorithm
1. The QZ-algorithm produces square orthogonal matricesQ andZ

for which

Z�AQ = S and Z�BQ = T

are upper triangular.QZ codes are available in software packages as LAPACK.

2. ThenAx = �Bx for � = Si;i=Ti;i and x = Qy wherey 6= 0

satisfies the upper triangular system(S � �T)y = 0.

Only feasible for low dimensional problems (n . 1000)

II. Shift and Invert Arnoldi
1. Shift and invert to a standard eigenvalue problem:

�
(A� �B)�1B
� ex = e�ex

ThenAx = �Bx for � = � + 1=e� and x = ex.

2. Arnoldi (or Lanczos) for the shifted and inverted problem can be
used to compute the eigenvalue(s)� closest to� .

Requires exact solutions of systems(A� �B)t = s. This
is costly or unfeasible for high dimensions

New Approach

Jacobi-DavidsonJacobi-DavidsonJacobi-Davidson

Characteristics

1. Applicable for high dimensional problems.

The matrices may be complex and non-symmetric.

2. No exact solutions are needed of systems involving A and B.

3. Iterative method that uses the following high dimensional operations

� vector updates

� DOT products

� multiplications byA andB (no inversion or exact solves)

� application of some preconditioner

plus the QZ-algorithm on low dimensional problems.

High dimensional operations are well parallelizable (how well de-
pends on the sparsity structure of the matricesA andB and on the
selected preconditioner).

4. Fast convergence.

5. Information from simpler models (preconditioners) can be exploited
to speed up convergence.

6. Can also find eigenvalues with associated eigenvectors in the interior
of the spectrum (= set of eigenvalues).

7. There are extensions (JDQZ) for computing a specific portion of the
spectrum.

8. There are extensions for quadratic and higher order polynomial
eigenproblems.

9. Convergence to specific eigenvalues can be guided.

More Details
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Preconditioning SLEIJPEN, VAN DER VORST, MEIJERINK, ETNA, 7 (1998), pp. 75–89.
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Details on Jacobi-Davidson

Jacobi-Davidson searches for an approximate eigenvector in a low dimensional
search subspaceVk. It expands this subspace with one vector if the obtained
approximation is not accurate enough. This procedure is repeated until conver-
gence.

The low dimensionality allows efficient computations.

Fundamental questions

� How toextract approximate eigenvectors fromVk? Answer:Galerkin

� How toexpandVk? Answer:Newton

Both answers are optimal with respect to the information that is available. Jacobi-
Davidson is (inexact) Newton with subspace acceleration in which all steps are
optimally tailored for (generalized) eigenvalue problems.

Jacobi-Davidson QZJacobi-Davidson QZJacobi-Davidson QZ

Restart. Increasing storage or computational overhead, for increasing dimen-
sionk of the subspaces, may make it necessary to restart (if, say,k > 30). With
a restart by a single vector, valuable information that is contained in the remain-
ing part of the subspace may be discarded, leading to a slowdown of speed of
convergence. Therefore, Jacobi-Davidson is restarted with a space spanned by
a small number (say, 5) of Petrov vectors with Petrov values closest to the tar-
get� . These are the vectors that contain the most valuable information for the
wanted eigenpair.

Deflation. When a Petrov value is close enough to an eigenvalue, the remain-
ing part of the current subspace will already have rich components in nearby
eigenpairs. This information is used as basis for a subspace for the computation
of the next eigenvector. In order to avoid that old eigenvectors will re-enter the
computational process, the new search vectors are explicitly orthogonalized to
the computed eigenvectors. This technique is calleddeflation.

Partial QZ-decomposition. For stability and for easy computation, working
with orthonormal basis is preferred. Instead of eigenvectors, a partial QZ-
decomposition is computed:

AQ
m

= ZmSm and BQ
m

= ZmTm:

Here the columns of then by m matrixQ
m

form an orthonormal basis of the
space spanned bym wanted eigenvectors. The matrixZm is alson by m and
orthonormal.Sm andTm are squarem bym upper triangular. As for the full QZ-
decomposition, eigenvalues with associated eigenvector can easily be extracted
from the partial decomposition.

Jacobi-Davidson QZ.The use of the QZ-decomposition for the reduced matri-
ces allows easy accommodation of restarts and deflation and leads in a natural
way to a partial QZ-decomposition. The resulting scheme is calledJacobi-
Davidson QZ and can be viewed as a truncated form of the QZ-algorithm for
large generalized eigenvalue problems.

Solving the correction equation accurately: two small examples

The examples here are of relative low order and serve as illustration of the effect of
solving of the correction equation more accurately. In both examples the five rightmost
eigenvalues are computed. The figures show the log10 of the norm of the residual as
a function of the computational costs (expressed in mega floating point operations).
Every time when the norm is less then10�8, an eigenvalue is determined and the
iteration is continued with deflation for the next eigenvalue. The maximum dimension
of the search subspace is 15. After restart the dimension is 10. One and ten steps of
GMRES were used to compute an approximate solution of the correction equation.

Both examples show that it pays to solve the correction equation more accurately.
Although the projections become more expensive after convergence of a few eigen-
vectors, the computational costs to find the next eigenvectors does not increase. Ap-
parently, the speed of convergence improves.

Example 1. The eigenproblem of order
4096 comes from the stability analysis
of an integrated circuit. No precondi-
tioner has been used.
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Note that after an initial phase with two
small bumps, JDQZ converges quite
fast. For the next two eigenvalues there
is no such initial stagnation. Apparently,
in the iteration for the first eigenvalue,
components for the next eigenvector are
already collected in the search subspace.

Example 2. The eigenproblem (“Brus-
selator”) of order 2000 models the sta-
bility of concentration waves for reac-
tion and transport interaction of chemi-
cal solutions in a tubular reactor.
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The preconditioner ILU(0) (incomplete
LU ofA�B) for GMRES has been con-
structed only once, and appears to re-
main efficient also for eigenvalues far-
ther away from the target� = 1.

Jacobi-Davidson QZJacobi-Davidson QZJacobi-Davidson QZ

an e�cient tool for solving Generalized Eigenproblemsan e�cient tool for solving Generalized Eigenproblemsan e�cient tool for solving Generalized Eigenproblems

Abstract

Jacobi-Davidson QZ is an effi-
cient and robust algorithm for
finding one or a few eigenvalues
with specific properties (largest,
with largest real part, closest to
zero) and for finding the associ-
ated eigenvalues.
The method applies to all
sorts of square matrices: sym-
metric, non-symmetric, non-
normal, complex, etc.. In com-
parison with other methods it is
specifically powerful for large
sparse matrices.
There are extensions for solv-
ing quadric eigenproblems and
for even higher order polyno-
mial eigenproblems.

in millions of unknowns

generalized
eigenproblem

λAx=  Bx

electric circuit
design

climate
modelling

astrophysical
processes

The behaviour of each
component (like coil, capacitor, ...)

is described by one or more equations.
Together with Kirchhoff’s law this gives a 

coupled system of equations for the behaviour
of the whole circuit.

Stability of the circuit is related to the
eigenfrequencies of this coupled

system
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One of the proposed
mechanisms to explain the heating

of the solar corona is resonant absorption
of magnetic Alfven waves. Analysis of these

magnetohydrodynamic waves in a coronal loop
needs the solution of very large generalized

eigensystems.

High resolution discretizations of the modelling partial differential equations lead to
generalized eigenproblems of very high dimension. In the project, there was a need for
solvers of eigenproblems of dimension600 000 and more. The conventional
approaches could not cope well with such high dimensions.

For given squaren by n matricesA andB and some value� 2 C ,
find scalars� 2 C close to the target value� and vectorsx for which

Ax = �Bx

� is an eigenvalue,x is an eigenvector associated with�.
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