Jacobi-Davidson QZ

an efficient tool for solving Generalized Eigenproblems

 cerom and of finding
ted
ted eigenaluses

 re even higher order

I. The QZ-algorithm

1. The QZ-algorithm pro
${ }^{\prime} \mathrm{AQ}=\mathrm{S}$ and $\mathrm{Z}^{\prime} \mathrm{BQ}=$
 Only feasible for low dimensional problems ($n \lesssim 1000$)
II. Shift and Invert Arnoldi
. Shift and invert to s standard eigenvalue problem:
$\left[(\mathbf{A}-\tau \mathbf{B})^{-1} \mathbf{B}\right] \tilde{x}=\tilde{\lambda} \tilde{x}$
Then $\mathrm{Ax}=\lambda \mathrm{Bx}$ for $\lambda=\tau+1 / \hat{\mathrm{a}}$ and $\mathrm{x}=\mathrm{x}$.
2. Arnoldid (or Lanczos) for the shifted dnal inverted problem can be
used to compute the iegenvalue(s) λ d losest to τ. Requires exact solutions of systems $(\mathrm{A}-\tau \mathrm{B}) \mathrm{t}=\mathrm{s}$. This
is costly or unfeasible for high dimensions

Characteristics
Appicicable for high dimensional problems.
The matrices may be complex and non-symmetric.
No exact solutions are needed of systems involving A and B. herative method that uses the following high dimensional operation - vector updates

- Dot products
multipications by A and B (no inversion or exact solves)
- application of some preconditione
plus the QZ-algorithm on low dimensional problems
High dimensional operations are well parallelizable (how well de-
pends on the sparsity structure of the matrices A and B Band on the
selected precondition selected preconditioner).

Fast convergence.

Information from simpler models (preconditioners) can be exploited
to speed up convergence. to speed up convergence.
Can also find eigenvalues with associated digenvectors in the interior
of the spectumm
seto of eigenvalues). There are extensions (IDQZ) for computing a specific portion of the
spectum.
8. There are extensions for quadratic and higher order polynomial
eigenproblems.

Convergence to specific eigenvalues can be guided.

Details on Jacobi-Davidson

 gence.
The low dimensionality allows efficient computations.
Fundamental questions

- How to extract approximace genvectors from u Galerkin - How to expand ν_{k} ? swer: Newton Both answers are optimal with respectto the information thatis available. Jacobi-
Davidson is (inexact) Newton with subspace acceleration in which all steps are
 EXTRACT Petrov-Galerki
Find $\mathbf{u} \in \mathcal{V}_{k}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{k}\right\}$ such hat B) $\boldsymbol{\perp} \perp \mathcal{W}_{k}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$

$\left(\mathbf{W}^{-1} \mathrm{AV}_{-}-\rho \mathbf{W}_{i} B \mathrm{BV}_{A}\right) y=0$

EXPAND Inexact Newton
Compute the residual vector and an auxiliary vector $\mathrm{z}=\tilde{\mathrm{z}}\| \| \overline{\mathrm{z}} \tilde{\|}_{2}$ where
Find an u roximate solution $\tilde{t} \perp u$ of the J Jacobi-Davidson correction equation
 The Jacobi-Davidson corr. eq. is a Jacobian system of a Newton process. Therefore: quadratic converegence when solved exactly, bu
acceleration, also fast converenence with inexact solutions.

Preconditioners
If M is a preconditione for $\mathrm{A}-\theta \mathrm{B}$, then M_{2} i is a preconditioner for A_{p}, where $\mathrm{M}_{p} \equiv\left(\mathrm{I}-\mathrm{zz} \mathbf{z}^{*}\right) \mathrm{M}\left(\mathrm{I}-\mathrm{u} \mathbf{u}^{*}\right)$ and $\mathrm{A}_{p} \equiv(\mathrm{I}-\mathrm{zz})(\mathrm{A}-\theta \mathrm{B})\left(\mathrm{I}-\mathrm{u} \mathbf{u}^{*}\right)$. The action of the preconditioned operator $\mathrm{M}_{p}^{-1} \mathrm{~A}_{p}$ on vectors s can be efficiently
incorporated in solvers as GMRES First solve y from $M y=z$ and compute $\mu=u^{\prime} y$. Only once er ineares soled
 Note that M can also be used for other nearby θ. It pays to make a good pre-
conditioner.

Jacobi-Davidson QZ

Restart. Increasing storage or computational overhea, for increasing dimen-
sion k of the subspaces, , may make it necessary to restart ifis say $k>30$, With sion k of the subspaces, may make it necessary ty restart (if, say, $k>30$. Winh
a restart by b a single eector, valuable information hat is contained in the emaina restart by y single vector, valuable information that is contained in the remain-
ing part of the subspace may be discarded, , eadiding to a slowdown of speed of
 a small number (say, 5) of Petrov vectors with Petrov values closest to the tar-
get τ. These are the vectors that contain the most valuable information for the ${ }^{\text {get }}$ watted Cesengenair.
Deflation. When a Petrov value is close enough to an eigenvalue, the remain-
ing part of the current subspace will already have rich components in nearby ing part of the current subspace will already have rich components in nearby
eigenpaiss. This information is sused as basis for a subspace for the computation
 computational process, the new search vectors are explicitly orthogonalized to
the computed eigenvectors. This technique is called defation. Partial QZ-decomposition. For stability and for easy computation, working
with orthonomal basis is referered. Instead of eieenvectors, a partial QZ

$$
\mathrm{AQ}_{m}=\mathbf{Z}_{m} S_{m} \text { and } \quad \mathrm{BQ}_{m}=\mathbf{Z}_{m} T_{m} \text {. }
$$

Here the columns of the n by m matrix Q_{m} form an orthonormal basis of the
space spanned by m wanted eigenvectors. The matrix Z_{m} is also n by m and space spanned by m wanted eigenvectors. The matrix Z_{m} is also n by m and
orthonormal. S_{m} and T_{m} res square m by m uppertriangular. As for the full $Q Z$ -
 from the partial decomposition.
Jacoi-DOVidson QZ. The use of the QZ-decomposition for the reduced matri-
ces allows asy accommodation of rest ces alloww easy accommodation of restarts sand deffltation and terdeds in a a natural
way to a partial QZ-decomposition. The Davidson QZ and can be be vieweditas as atruncated form of the OZ-alloorithm for
large eend Davidson Q and can be viewed as a
large generalized eigenvalue problems.

Der and IDOZ
prconditioning

\qquad

