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Abstract la
Jacobi-Davidson QZ is an effi- L L

cient and robust algorithm for

cobi-Davidson QZ

unspearcpoperes s, Q) @fficient tool for solving Generalized Eigenproblems

with largest real part, closest to : o
zero) and for finding the associ- l. The QZ-algorithm Characteristics

ated eigenvalues. 1. The QZ-algorithm produces square orthogonal matriigesidZ
The method applies to all for which

sorts of square matrices: sym-
metric, non-symmetric, non-
normal, complex, etc.. In com-
parison with other methods it is

New Approach

Conventional Approaches Jacobi-Davidson

1. Applicable for high dimensional problems.
Z*AQ=S and Z'BQ=T The matrices may be complex and non-symmetric.
are upper triangulaRZ codes are available in software packages as LAPACK. 2. No exact solutions are needed of systems involving A and B.

2. ThenAx = ABx for A = S;;/T;; andx = Qy wherey # 0
satisfies the upper triangular systé®i— AT)y = 0.

3. Iterative method that uses the following high dimensional operations

specifically powerful for large ' : : .
sparse matrices. aStrOphySICaI Only feasible for low dimensional problems £ 1000) * ‘;‘;‘tTor “pddates
There are extensions for solv- o products
ing quadric eigenproblems and processes II. Shift and Invert Arnoldi e multiplications byA andB (no inversion or exact solves)
:ﬁiralec\e/g:—:-r:g?cr:tirer%rsder polyno- 1. [Shift and invert to a standard eigenvalue problem: e application of some preconditioner
| [(A _ TB)_lB] % — \% plus the QZ-algorithm on low dimensional problems.

High dimensional operations are well parallelizable (how well de-

Then Ax = ABx for A =7 + 1/X andx = x. pends on the sparsity structure of the matrideandB and on the
; i i 2. [Arnoldi (or Lanczos) for the shifted and inverted problem can be selected preconditioner).
€|eCtrIC CIFCUIt used to compute the eigenvaluels)losest tor. 4. Fast convergence.

One of the proposed
mechanisms to explain the heating
of the solar corona is resonant absorption
of magnetic Alfven waves. Analysis of these
magnetohydrodynamic waves in a coronal loop
needs the solution of very large generalized

eigensystems.

Requires exact solutions of systef@s— 7B)t = s. This

is costly or unfeasible for high dimensions 5. Information from simpler models (preconditioners) can be exploited

to speed up convergence.

design

6. Can also find eigenvalues with associated eigenvectorsin the interior
of the spectrum (= set of eigenvalues).

The behaviour of each
component (like coil, capacitor, ...)
is described by one or more equations.
Together with Kirchhoff's law this gives a
coupled system of equations for the behaviour
of the whole circuit. 0 0

climate

Gerard Sleijpen

7. There are extensions (JDQZ) for computing a specific portion of the
spectrum.

modelling

8. There are extensions for quadratic and higher order polynomial
eigenproblems.

Stabilityiof the circuit is related to the
eigenfrequencies of this coupled
system

9. Convergence to specific eigenvalues can be guided.

generalized
elgenproblem

Henk van der Vorst

‘in mkiaSn = o&k@w)ng est / i A new and robust tool for finding eigenfrequencies
STITE QP STRAAT?
” | EBnS MEER i ARMMEL KUNNEN HIER IN
£ fx Oo0A BLHmRe | ; MHUIS NIET EENS
For given square by n matricesA andB and some value € C, High resolution discretizations of the modelling partial differential equations lead to A\
find scalars\ € C close to the target valueand vectors for which generalized eigenproblems of very high dimension. In the project, there was a need for
Menno Genseberger Ax = \Bx solvers of eigenproblems of dimensiédd 000 and more. The conventional

A is an eigenvaluex is an eigenvector associated with ~ approaches could not cope well with such high dimensions.

Details on Jacobi-Davidson Preconditioners
If M is a preconditioner foA — B, thenM,, is a preconditioner foA ,, where Solving the correction equation accurately: two small examples
Jacobi-Davidson searches for an f’:lpprOXImate el.genvector n a.Iow dlmeQS|onaI y=I—-zz)M(I—-uu") and A, =(I-2zz")(A—-0B)(I-uu"). The examples here are of relative low order and serve as illustration of the effect of B KOk NOLL. Hio HEEFT 6N
search subspace/;. It expands this subspace with one vector if the obtained solving of the correction equation more accurately. In both examples the five rightmost fﬂﬂﬁ‘t@?;ﬁﬂ?ﬁ;ﬁﬁﬁ."’ﬁg
approximation is not accurate enough. This procedure is repeated until conver- The action of the preconditioned operaM;jl A, on vectors can be efficiently eigenvalues are computed. The figures show the lofithe norm of the residual as - iy s
gence. . di | _ b a function of the computational costs (expressed in mega floating point operations).
. . . . ) Incorporated in solvers as GMRES: Every time when the norm is less thétr®, an eigenvalue is determined and the
The low dimensionality allows efficient computations. . C v [ ——"—————. iteration is continued with deflation for the next eigenvalue. The maximum dimension
. First sc_)lvey from My = z and computg: = }1 y- of the search subspace is 15. After restart the dimension is 10. One and ten steps of
Fundamental questions Then, in each GMRES step, compiitee M~ A s as GMRES were used to compute an approximate solution of the correction equation.
. . ) . Both examples show that it pays to solve the correction equation more accurately.
?
o How toextract approximate eigenvectors from?  Answer.Galerkin os« (A—-0B)s gﬂgwc;”e Although the projections become more expensive after convergence of a few eigen-
e How toexpandV,? Answer:Newton e SolveMs' = s projection! vectors, the computational costs to find the next eigenvectors does not increase. Ap-
el ' ot «— s — y( ,u_l(u*s’)) parently, the speed of convergence improves.
Both answers are optimal with respect to the information that is available. Jacobi- Example 1. The eigenproblem of order Example 2. The eigenproblem (“Brus-

Davidson is (inexact) Newton with subspace acceleration in which all steps are
optimally tailored for (generalized) eigenvalue problems.

4096 comes from the stability analysis selator”) of order 2000 models the sta-
of an integrated circuit. No precondi- bility of concentration waves for reac-

Note thatM can also be used for other nearhylt pays to make a good pre-

X
2
conditioner. tioner has been used. tion and transport interaction of chemi- _ _ O
. cal solutions in a tubular reactor. ... operations are well parallelizable ... 3
EXTRACT Petrov-Galerkin . H a1 SE—
Jacobi-Davidson QZ | e =
- o SRESIp) - |
Find u € V;, = {vy,...,v,} suchthat ; : * ~ h 2
r=(A-6Bjul W,={wy,...,wi}. Restart. Increasing storage or computational overhead, for increasing dimen- 5 ; . c
_ _ sionk of the subspaces, may make it necessary to restart (ifi sayg0). With g E S
(¢, u) is thePetrov pair w.r.t. thesearchsubspace’, and thetestsubsp V. a restart by a single vector, valuable information that is contained in the remain- wf 17 £ S
In practice. k < n ing part of the subspace may be discarded, leading to a slowdown of speed of o w0 m we %0 N )
Withboth V, = [vy |vy ]| ... |vi] and W, = [wy |w, | ... |w,] orthonormal, convergence. Therefore, Jacobi-Davidson is restarted with a space spanned by O eettorextes . ﬁ
andu =V, y, we have a low dimensional generalized eigenproblem a small number (say, 5) of Petrov vectors with Petrov values closest to the tar- B G20 YT & T [ (i) (172 %)
et~. Th th t that tain th t valuable inf tion for th small bumps, JDQZ converges quite The preconditioner ILU(0) (incomplete 8
(WIAV, —0W; BV, )y =0. getr. (_ase are. € Vectors that contain the most valuabie Information tor the fast. For the next two eigenvalues there LU of A—B)for GMRES has been con- o
Apply QZ for the low di ol reduced WAV and WOBY wanted eigenpair. is no such initial stagnation. Apparently, structed only once, and appears to re- o
pply or the low dimensional reduced matric¥€; an * . . i . ) ] . : : : : . : : O
RV k KDV E Deflation. When a Petrov value is close enough to an eigenvalue, the remain- in the iteration for the flrs_t eigenvalue, main efficient also for eigenvalues far
) i ) ) components for the next eigenvector are ther away from the target= 1.
ing part of the current subspace will already have rich components in nearby already collected in the search subspace.
EXPAND Inexact Newton eigenpairs. This informationis used as basis for a subspace for the computation

of the next eigenvector. In order to avoid that old eigenvectors will re-enter the
computational process, the new search vectors are explicitly orthogonalized to
the computed eigenvectors. This technique is callefthtion

Compute theesidual vectorr and an auxiliary vectar = z/||z||, where

A large example

r=Au-¢Bu and z=fAu+oBu. Jacobi-Davidson can also be used for interior eigenvalues and for higher order poly-

Partial QZ-decomposition. For stability and for easy computation, working nomial eigenproblems. As an illustration, we discuss the computation of an interior

- - - —~ - - - - . . . . . - - - 7 -
Find an approximate solutianL u of the Jacobi-Davidson correction equation  with orthonormal basis is preferred. Instead of eigenvectors, a partial QZ- eigenvalue 0B ox + AAx + A\2A,x — 0. The quadratic eigenproblem comes Sleithessiedty o ‘(’)‘t’)’f_‘tD";r"/ i’gggﬁ’, o Sgﬁ;rt’;esgggl’e' More Details
wt=0 and (I—zz")(A—0B)(I—uu’)t=—r decomposition is computed: from modelling sound waves in a room with a wall with sound-absorbing ma- ' JD-algorithm SLEIJPEN AND VAN DER VORST, SIMAX, 17 (1996), pp. 401-425.
t(:.’l’la/. For the .Se/eCted finite Q/?ment discretization the matﬂﬁge&’e of JD general problems SLeiJPEN, BOOTEN, FOKKEMA, VAN DER VORST, BIT, 36:3 (1996), pp. 595-633.
L~ . AQ, =7.,S, and BQ, =Z,T.. Size274625. Plagonal precondltlongr was used. .Oﬁla'ay T3D with 64 JDQR and JDQZ FOKKEMA, SLEIJPEN, AND VAN DER VORST, SISC, 20 (1999), pp. 94-125.
ExpandV;, with t: orthonormalize w.r.t. Vi, to v ;. m " processors, it took 93.4 seconds with computational speed of 1 Gflop Preconditioning SLEIJPEN, VAN DER VORST, MEIJERINK, ETNA, 7 (1998), pp. 75-89.

Expand/V, with's = oAt + 15 Bt: orthonormaliz& w.r.t. W, to Wiyl to compute the wanted eigenvalue with a relative residual accuracy of.

Here the columns of the by m matrix Qm form an orthqnormal basis of the 10~¢. At peak performance (9.6 Gflopgine shift and invert step GENSEBERGER SLEIJPEN, VAN DER VoSIF;?T?Fl)JiTng’\éiz\;v:iisc;;:rjgggtsiltiloln7i’nljtﬁ2tjx:i[gillDL;L\J/i,d2lcj>?1.l\jth%d
The Jacobi-Davidson corr. eq. is a Jacobian system of a Newton process. space spanned by wanted eigenvectors. The matm is alson by m and would take more than 10 minutes, the QZ-algorithm would take in preparation
Therefore: quadratic convergence when solved exactly; but, due to the subspace orthonormg!Sm andTm are squaren by m upper.tnangular. As for thg full QZ- more than a month (if it would fit in the memory of the com- These papers and othevsww.math.uu.nl/people/sleijpen
acceleration, also fast convergence with inexact solutions. decomposition, eigenvalues with associated eigenvector can easily be extracted puter). The algorithm scales well as, for matrices of size www.math.uu.nl/people/vorst

from the partial decomposition. USSLEL, 5 st By dhe il

In practice. Any linear solver can be used to solve the correc’; approximates the singular

Number of processors wall clock time Part of this work was perfomed in the NWO Massively

equation. Complication: the correction equation is singula vector. The projections restrict Jacobi-Davidson QZ.The use Pf the QZ-decomposmon_for the reduce_d matri- 16 167.7 Parallel Computing Project on ‘Parallel Computational
C" However: the correction equation is non-singular framto ~to asubspace on which the sys- ces allows easy accommodation of restarts and deflation and leads in a natural 32 825 Magneto-Fluid Dynamcs' 95MPRO4
z*. Preconditioned iterative Krylov subspace solvers, as precoffiitis well-conditioned. way to a partial QZ-decomposition. The resulting scheme is caiedbi- 64 41.5

tioned GMRES, are very suitable for such situations: all iterates are orthogonat tbat is
the case for the initial guess. Often already a few steps lead to fast convergence.

Davidson QZ and can be viewed as a truncated form of the QZ-algorithm for
large generalized eigenvalue problems.
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