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Chapter 1


Introduction


Large scale eigenvalue problems play an important role in the scientific investigation of a
variety of phenomena. The different phenomena in question are not only of interest to sci-
entists, but they are also frequent news items as e.g. climate change and earthquakes. For the
computation of solutions to large scale eigenvalue problems the last two decades consider-
able progression has been made in the development of numerical methods. But still research
needs to be done for these methods. This thesis concerns an approach to relieve the amount
of computational work for one of the most attractive methods.


This introduction starts with a brief sketch of the background of those large scale eigen-
value problems and indicates some typical characteristics (§1.1). Then an overview is given
of methods for the numerical computation of solutions to eigenvalue problems (§1.2). The
major computational component of the method on which this thesis focusses is some special
kind of linear system. Therefore, also numerical methods for solving linear systems are con-
sidered in appropriate detail (§1.3). Emphasis will be on the construction of a preconditioner
based on domain decomposition (§1.4). After this survey the thesis is outlined in§1.5.
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1.1 The origin of eigenvalue problems


Eigenvalue problems show up in a diversity of scientific disciplines. For an impression of
its importance we give a short list of applications:


• rotating plasma equilibria in tokamaks (fusion research, see for instance [27, 30])


• states and interactions of particles in quantum chemistry or molecular physics (for in-
stance energy states of atoms [36], energy states of molecules [13], laser-molecule in-
teractions [64], and molecular dynamics [1])


• effects of earthquakes on buildings (structural engineering, for a recent paper see for
instance [62])


• stability analysis of ocean circulation patterns - ocean circulation is expected to be an
eminent factor in climate variability (climatology/oceanography, for a recent paper see
for instance [20])


• coronal loops of the sun (astrophysics, see for instance [3, 30])


See for an illustration the supplementary card that is included in this thesis.
In most situations the object of study is described by some partial differential equation.


For a numerical treatment the concerning equations are discretized. The partial differential
equations of some of these phenomena constitute an eigenvalue problem in itself, for the oth-
ers stability analysis of solutions of the concerning equations leads to an eigenvalue problem,
which in standard form is represented as:


Ax = λx. (1.1)


Other types of eigenvalue problems are also possible, e.g. the generalized oneAx = λBx.
Note that many of them can be written in standard form. We will restrict ourselves to standard
eigenproblems.


Characteristic properties of (1.1) are:


• large dimensions: realistic modelling and simulations require a fine grid discretization,
resulting in an eigenvalue problem with a large number (in the order of millions) of
unknowns,


• sparse and banded matrices: discretization of differential operators (for instance via
finite differences) leads to sparse or banded linear operators,


• many applications require knowledge of a few (extremal) eigenpairs only.


The first property has put heavy pressure on the recent development of numerical methods
for (1.1) whereas the two other properties somewhat relief the pain. This will be discussed
next.
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1.2 Numerical methods for eigenvalue problems


For the computation of solutions to an eigenvalue problem the available methods globally
split into two classes:


• dense methods (like QR for the standard eigenvalue problem (1.1) [23, 24] and QZ for
generalized eigenvalue problems [35])


• subspace methods (like Lanczos [31], Arnoldi [2], Davidson [15], and Jacobi-Davidson
[46])


The first class suits well for eigenvalue problems with relatively small dense matrices. In
general these methods compute all eigenvalues and the corresponding eigenvectors. As the
amount of computational work is of ordern3 and the required memory of ordern2, they
become impractical for largen-dimensional eigenvalue problems. In those situations one
may address a subspace method. Such a method condenses relevant information of the high
dimensional eigenvalue problem by projecting it on a subspace of relatively small dimen-
sion. It computes an approximate solution to the large eigenvalue problem from the small
projected eigenvalue problem by means of a dense method.


Next we describe the Jacobi-Davidson method and we will show how the subspace meth-
ods Arnoldi and Davidson (we will consider the Lanczos method as a special case of Arnoldi)
are related.


1.2.1 Accelerated inexact Newton methods


The Jacobi-Davidson method can be viewed as an accelerated inexact Newton method [25].
Typically, an accelerated inexact Newton method consists of the following components:


• projection of the original problem on a search subspace and computation of an approx-
imate solution from the projected problem,


• expansion of the search subspace with a new search direction obtained from a correc-
tion equation.


The first component is the accelerating part: not only the most recent search direction but
also previous search directions are taken into consideration for the computation of a new
approximate solution to the original problem.
The second component forms the inexact Newton part: the correction equation describes a
Newton step. In general it is inexact as only approximate solutions of the correction equation
are computed, for instance with some iterative method.


In practice, accelerated inexact Newton methods are very effective because often rather
accurate approximate solutions to a large problem can be obtained from a projected problem
of relatively small size. Then it is essential how the search subspace is constructed. This
construction is described iteratively by the correction equation and therefore the correction
equation deserves special attention.
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The correction equation “connects” the original problem with the projected problem. It
tries to describe a correction vector with important characteristic behavior of the original
problem not already present in the projected problem. Expansion of the search subspace with
such a correction vector then improves the projected system: a better approximate solution
can be obtained from the original problem projected on the new search subspace.


Many accelerated Newton type methods have a correction equation that involves a lin-
ear operator of equal dimension as the original problem. Then, for large scale problems the
computation of solutions to the correction equation may become a computational bottleneck.
In those situations exact solutions can be impractical because of time and/or memory limita-
tions. Fortunately, also approximate solutions of the correction equation can be used for the
expansion of the search subspace. The accuracy of such a solution affects the quality of the
expansion: in general a crude approximation is less effective than an approximation close to
the exact solution. As a direct consequence the accuracy of the new approximate solution to
the original problem depends on the accuracy of the approximate solution of the correction
equation.


1.2.2 The correction equation of Jacobi-Davidson


The main difference of Jacobi-Davidson with Arnoldi and Davidson is the correction equa-
tion. All three methods compute an approximate solution(θ,u) to an exact solution(λ,x)
of the eigenvalue problem (1.1) by projecting (1.1) on the search subspace. Without loss of
generalityu is assumed to be normalized.


Arnoldi’s method has no correction equation: mathematically it simply expands the search
subspace with the residualr ≡ (A− θ I ) u.


In his original paper [15], Davidson suggested to precondition this residual first by the
diagonalD of A, shifted by−θ, and expand the search subspace with the resulting vector
(D− θ I )−1 r. This idea was later refined to more general preconditionersM ≈ A − θ I
(see for instance [33, 42, 14, 52, 53]).


The crucial distinction between Davidson and Jacobi-Davidson is that the latter imposes
an extra requirement to keep things properly during the iteration process. This requirement
is based on the observation that the operatorA− θ I becomes singular whenθ converges to
an eigenvalueλ. An accurate preconditionerM ≈ A− θ I then also suffers from becoming
singular and preconditioning by just performing the inverse action ofM is not proper. The
Jacobi-Davidson method proposes the following remedy: compute a correction vectort ⊥ u
from


( I− uu∗ ) (A− θ I ) ( I− uu∗ ) t = −r. (1.2)


For interpretation of what is going on in (1.2), first consider the asymptotic caseθ = λ,
for a simple eigenvalueλ andu = x in the projections on the left-hand side butu 6= x
in r ≡ (A− θ I ) u on the right-hand side. (The argument does also hold foru 6= x on
the left-hand side (see the original discussion in [46]), for ease of presentation we consider a
less general situation here.) Then formally the operator on the left in (1.2) acts in the space
orthogonal to the eigenvectorx and, as this is precisely the direction in whichA − λ I is
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singular, is well defined there. For this asymptotic case the exact solution is equal to


t = − (A− λ I )† r = − (A− λ I )† (A− λ I ) u, (1.3)


here† denotes the pseudo-inverse of a matrix. If one takes a closer look on the right-hand side
of (1.3) the following can be observed: the operator(A− λ I ) removes the component from
u in the direction ofx and the operator(A− λ I )† transforms all remaining components
back. As a consequence, with thet from (1.3) the updateu + t is equal toγ x for some
scalarγ and the eigenvector one is looking for is obtained in just one step.


In practice(θ,u) ≈ (λ,x) and to facilitate interpretation of (1.2) for those situations the
correction equation is first written in its augmented formulation [44,§3.4]:


[


A− θ I u
u∗ 0


] [


t
ε


]


=
[


−r
0


]


. (1.4)


Here the requirementt ⊥ u is represented explicitly in the last row of the augmented matrix.
In view of an inexact Newton method applied to a general nonlinear problem (an eigenvalue
problem is weakly nonlinear)ε can be interpreted as a stepsize control variable, its value
tends to zero when convergence to a “limit point”(λ,x) takes place and this prevents the
augmented matrix in (1.4) from getting singular. This strategy of adding an extra constraint
to retain stability is also known as arc length method (for a recent application see for instance
[38]).


The Jacobi-Davidson method belongs to that class of accelerated inexact Newton meth-
ods for which the dimension of the correction equation is proportional to the dimension of
the original problem. For those methods it was mentioned in§1.2.1 that, especially for large
scale problems, the computation of exact solutions to the correction equation may become
impractical and it remains to compute approximate solutions. The correction equation of
Jacobi-Davidson is a special type of linear system. First for ordinary linear systems it will
be discussed how approximate solutions can be computed with Krylov subspace methods.


1.3 Krylov subspace methods for linear systems


For the computation of approximate solutions to large sparse linear systems Krylov subspace
methods have become very popular. For many applications, a Krylov subspace method in
combination with a preconditioner may be a good alternative for direct methods.


Given a linear system


Ax = b, (1.5)


a Krylov subspace method generates iteratively a Krylov subspaceKm (A,v0) built by pow-
ers of matrixA applied to the startvectorv0:


Km (A,v0) ≡ span
(


v0,Av0,A2 v0, . . . ,Am−1 v0
)


,







Introduction 12


and computes an approximate solution to (1.5) with respect toKm (A,v0). There are dif-
ferent choices possible for the computation of the approximate solution and so there are dif-
ferent Krylov subspace methods, like CG, BiCG, QMR, GCR, Bi-CGSTAB, GMRES, and
FOM. For example: FOM computes an approximate solution such that its residual is or-
thogonal to the Krylov subspace whereas GMRES minimizes the residual with respect to
the Krylov subspace.


Compared to eachother Krylov subspace methods have their pros and cons. But over-
all, when compared with a direct method for the solution of (1.5) a considerable reduction
in computational work may be achieved, particularly for large sparseA. By taking powers
of A, dominant eigenvalues and -vectors ofA will soon show up. So already for a small
dimension these dominant eigenvectors are represented well in the Krylov subspace. If in
addition these dominant eigenvectors are the main components of the exact solution of (1.5)
then an approximate solution with respect to such a low dimensional Krylov subspace is quite
accurate. But this ideal situation is not always the case. Then the incorporation of a precon-
ditioner may be beneficial.


1.3.1 Preconditioning


When the matrixA of the linear system (1.5) is not easily invertible, one may try to construct
a nonsingular preconditionerM ≈ A of which the inverse action can be computed more
easily. Here “M ≈ A” means thatM possesses about the same important spectral properties
of A. Which spectral properties are of importance also depends on the solution of (1.5). For
example, it may happen that the dominant eigenvalues and corresponding eigenvectors ofA
are too dominant and a proper damping of these components byM−1 suffices.


Application of a Krylov subspace method to the (here for simplicity left-) preconditioned
linear system


M−1 Ax = M−1 b (1.6)


leads to a Krylov subspace


K′m
(


M−1 A,v0
)


≡ span
(


v0,M−1 Av0,
(


M−1 A
)2


v0, . . . ,
(


M−1 A
)m−1


v0


)


.


Note that the systems (1.5) and (1.6) are equivalent, both yield the same solution. It is for the
iterative computation of approximate solutions that a preconditioner is incorporated. Con-
vergence of the preconditioned Krylov subspace method depends again on how fast the most
important components of the solution show up in the Krylov subspace. Here the only restric-
tion forM is that it is nonsingular and one may exploit this freedom to increase the speed of
convergence.
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Because of its importance it is stressed again that a good preconditioner heavily relies on
the system which needs to be solved. For ordinary linear systems (1.5) numerous precondi-
tioning techniques have been developped. Three classes can be distinguished:


• algebraic techniques: the preconditioner is based on algebraic properties (sparsity pat-
tern, matrix entries, etc.) of the matrix (for instance incomplete factorizations like In-
complete Cholesky, ILU, MILU),


• domain decomposition techniques: the preconditioner is based on subproblems that
originate from decomposition of the large problem into smaller coupled ones (for in-
stance Schwarz methods), and


• multilevel techniques: the preconditioner is constructed by transformation of the ma-
trix to different scales (for instance FFT, multigrid, wavelets).


Application of an algebraic technique requires some additional properties of the original
matrix (in many cases the matrix needs to be positive definite). The linear operatorA− θ I
in the correction equation (1.2) of Jacobi-Davidson is indefinite:A is shifted by an approx-
imate eigenvalueθ. Forθ somewhere in the interior of the spectrum,A− θ I is even highly
indefinite. This property ofA − θ I prevents in general a succesfull application of an al-
gebraic preconditioning technique to correction equation (1.2). An additional problem may
be that the value ofθ changes in each outer iteration. For a further discussion on algebraic
techniques and the correction equation of Jacobi-Davidson, see for instance [47,§2.1].


Domain decomposition techniques and multilevel techniques have become popular tools.
By comparing them, both types of techniques show advantages and disadvantages. Methods
have been proposed that combine advantages of both techniques (see, for instance, surveys
[12, 49]). There are even attempts to fit multilevel and domain decomposition in a general
framework [63].


The choice in this thesis is a domain decomposition approach. Most important reason
for this choice is that it enables a subdivision of a large problem into smaller (coupled) sub-
problems in a natural way in the following sense: there is a direct relationship between the
“algebraic” subdivision of the matrix and vectors into smaller objects and the “geometric”
division of the “physical” problem into subproblems. Here the matrix represents the dis-
cretization of the continuous equations that describe the “physical” problem. The kind of
applications mentioned in§1.1 suits well in such an approach. Decomposition into smaller
subproblems is also necessary: as already indicated the corresponding eigenvalue problems
are of very large scale. Then a parallel approach to the large problem is possible, for instance
on a parallel computing environment. Furthermore, the computation of solutions to the small
subproblems is usually less hard.


Next the basic ideas of the common domain decomposition techniques are presented for
a two subdomain case.
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FIGURE 1.1. Overlapping (left) and nonoverlapping (right) decomposition of a domainΩ into Ω = Ω1 ∪ Ω2.
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1.4 Domain decomposition


Recently the possibilities of a (massively) parallel approach with supercomputers renewed
attention for domain decomposition methods. Already in the 19th century domain decom-
position was considered as an approach to subdivide a hard problem in more easy to solve
parts [43]. This approach forms the basis of the developments of the last two decades.


1.4.1 Schwarz methods


The concepts will be illustrated for a two subdomain case. Consider a physical problem de-
scribed by a partial differential equation


Lϕ = f. (1.7)


Hereϕ = ϕ(x, y) is defined on a two dimensional rectangular domainΩ. For simplicity the
conditions forϕ on the external boundary ofΩ are left out of the discussion.


An overlappingSchwarz method (the left decomposition in Fig. 1.1) decomposesΩ in
the subdomainsΩ1 andΩ2 such thatΩ1∪Ω2 = Ω andΩ1∩Ω2 is a (small) two dimensional
region. On these subdomains, the system (1.7) can be written as two coupled subsystems:


L1 ϕ1 = f1 on Ω1 (1.8)


and
L2 ϕ2 = f2 on Ω2. (1.9)


The indexi refers to subdomainΩi, on which subsystem (1.8), (1.9), fori = 1, 2, respec-
tively, is defined. Note that the subsystems need additional internal boundary conditions. On
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the two dimensional overlapΩ1 ∩ Ω2, solutionsϕ1 andϕ2 of the subsystems are equal:


ϕ1|Ω1∩Ω2
= ϕ2|Ω1∩Ω2


, (1.10)


i.e. they are matched by some continuity requirement. As a consequence the value ofϕ1


equals the value ofϕ2 at the internal boundaryΓ1r of Ω1. The same is true at the internal
boundaryΓ2` of Ω2. So appropriate internal boundary conditions for (1.8) and (1.9), respec-
tively are


ϕ1|Γ1r
= ϕ2|Γ1r


and
ϕ2|Γ2`


= ϕ1|Γ2`
,


respectively.
For the numerical computation of a solution to (1.7) (sub)domainΩ (Ωi) is covered by


an appropriate (sub)grid̂Ω (̂Ωi). The operator and functions in (1.7) are discretized tôL, ϕ̂,
and ̂f by means of finite differences or finite elements. Analogous to the continuous case an
index refers to a subgrid. It is assumed that̂Ω1 ∩ ̂Ω2 = Ω̂1 ∩ Ω2. The method consists of
computing solutions on the subgridŝΩ1 and̂Ω2 only and using values of̂ϕ1 andϕ̂2 from a
previous iteration on the other subgrid:


̂L1 ϕ̂(i)
1 = ̂f1 on ̂Ω1, (1.11)


ϕ̂(i)
1


∣


∣


∣


Γ̂1r


= ϕ̂(i−1)
2


∣


∣


∣


Γ̂1r


, (1.12)


and


̂L2 ϕ̂(i)
2 = ̂f2 on ̂Ω2, (1.13)


ϕ̂(i)
2 |


Γ̂2`
= ϕ̂(i−1)


1


∣


∣


∣


Γ̂2`


. (1.14)


Information from one subgrid to the other is transferred via (1.12) and (1.14). The speed of
convergence of an overlapping Schwarz method depends on the amount of overlap.


A nonoverlappingSchwarz method (the right decomposition in Fig. 1.1) decomposesΩ
into two nonoverlapping subdomainsΩ1 andΩ2 such thatΩ1 ∪ Γ ∪Ω2 = Ω. HereΓ is the
internal boundary that equals the right boundaryΓ1r of Ω1 and the left boundaryΓ2` of Ω2.
Now, coupling between the subsystems


L1 ϕ1 = f1 on Ω1 (1.15)


and
L2 ϕ2 = f2 on Ω2 (1.16)


is maintained by the internal boundary conditions


G ϕ1|Γ1r
= G ϕ2|Γ2`


(1.17)
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with G an appropriate operator.
Discretization yields the following algorithm:


Computeϕ̂(i)
1 from


̂L1 ϕ̂(i)
1 = ̂f1 on ̂Ω1, (1.18)


̂G12 ϕ̂(i)
1


∣


∣


∣


Γ̂1r


= ̂G12 ϕ̂(i−1)
2


∣


∣


∣


Γ̂2`


, (1.19)


and computêϕ(i)
2 from


̂L2 ϕ̂(i)
2 = ̂f2 on ̂Ω2, (1.20)


̂G21 ϕ̂(i)
2


∣


∣


∣


Γ̂2`


= ̂G21 ϕ̂(i−1)
1


∣


∣


∣


Γ̂1r


. (1.21)


The difference with the overlapping Schwarz method is that here information from one sub-
grid to the other is transferred via discretized boundary conditions (1.19) and (1.21) instead
of a shared interchange region̂Ω1 ∩ ̂Ω2. The speed of convergence of a nonoverlapping
Schwarz method depends on the boundary conditions on the internal boundary. For an op-
erator on the internal boundary that describes the boundary conditions corresponding to the
exact solution, the method needs only one iteration. But, this needs unknown information.
In practice, popular choices for the operator in (1.19) and (1.21) are the identity (a Dirich-
let condition) and the first order (discretized) derivative (a Neumann condition). Then, for
instance “Neumann-Dirichlet coupling” means a Neumann condition described bŷG12 in
(1.19) and a Dirichlet condition described bŷG21 in (1.21). A more sophisticated choice is
some linear combination of a Dirichlet and Neumann condition: a mixed or Robin condition.


By elimination of the subsystems (1.18) and (1.20) a reduced system on the interface
̂Γ1r = ̂Γ2` remains which is the Schur complement. Also overlapping Schwarz methods
can be formulated as specific Schur complements (see [4, 11]; a more recent paper is [61]).


Overlapping Schwarz methods have the disadvantage that the overlap results in compu-
tational overhead.


Nonoverlapping Schwarz methods, rely heavily on appropriate conditions on the internal
boundaries. It is possible to tune this coupling for better convergence, as will be explained
now.


1.4.2 Tuning of the coupling


The idea of a nonoverlapping Schwarz method with more sophisticated internal boundary
conditions was generalized by Tang [57] and by Tan and Borsboom [55, 56].


The enhancement of matrices and vectors, as introduced by Tang in [57], enables a clear
and compact formulation of the domain decomposition method. In the two subdomain case
of §1.4.1, the nonoverlapping subgridŝΩ1 and̂Ω2 are expanded with additional gridpoints
along the internal boundarŷΓ1r = ̂Γ1`. Unknowns are defined on the additional gridpoints.
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These additional unknowns constitute the enhancement of the vector with unknowns. In or-
der to fit the extra unknowns in the discretized system, the matrix that represents the dis-
cretized operator is enhanced. For that purpose Tang made a splitting of the subblocks that
couple the unknowns along the internal boundary and enhanced the right-hand side vector
with a copy of the right-hand side values corresponding to those subblocks.


Tan and Borsboom [55, 56] refined this concept by defining a double set of additional
gridpoints near the interface. Then no splitting of subblocks of the discretized operator, that
describes the original system, needs to be made as coupling between unknowns and corre-
sponding additional unknowns near the interface is defined by extra equations independently
of the discretization.


By enhancing the unknowns near/along the internal boundary, extra degrees of freedom
are created reflected by coupling parameters. These parameters can be interpreted as weights
that describe (for many parameters even higher order) mixed boundary conditions at the in-
ternal boundary. The idea is to tune these parameters to speed up the convergence of the do-
main decomposition method. This tuning needs some knowledge of the (physical) system
from which the linear system arises via discretization. By performing for a modelproblem an
analysis, optimal coupling parameters can be determined. These values can be used to esti-
mate appropriate coupling parameters for more complex problems. This approach has been
very successful for elliptic problems also in case of advection dominated problems [55, 56].


1.5 Outline of this thesis


Before one tries to apply the domain decomposition technique [55, 56] to the correction equa-
tion of the Jacobi-Davidson method one should be aware of the following two aspects.


First it should be emphasized that accelerated inexact Newton methods, in particular
Jacobi-Davidson in combination with approximate solutions of the correction equation, are
nested iterative methods. As a consequence the accuracy obtained in the innerloop (a trun-
cated iterative method for the correction equation) affects the outerloop (the iterations of
Jacobi-Davidson).


Secondly, due to the shiftθ, the linear operator in the correction equation is usually indefi-
nite. As the domain decomposition technique from Tang and Tan & Borsboom is developped
for positive definite matrices, this technique cannot be applied right away to the correction
equation and further investigation is needed.


The thesis is organized as follows.


First in chapter 2 alternative correction equations for the original Jacobi-Davidson with-
out any preconditioning are studied.
This study is motivated by an analogy with nested methods GMRESR [59] and GCRO [18]
for systems of linear equations as discussed in [25]. Furthermore, it may yield a remedy for
the case ofθ close to a multiple eigenvalue.
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After this pilot study the stage is set for the incorporation of the domain decomposition tech-
nique in the Jacobi-Davidson method.


The heart of this thesis is contained in chapter 3. There the concepts of the domain de-
composition technique from Tang [57] and Tan & Borsboom [55, 56] are reformulated and
adapted for the correction equation.
An analysis is performed for a two dimensional advection-diffusion model eigenvalue prob-
lem with constant coefficients. With this knowledge in mind, optimal coupling parameters
can be determined for different types of coupling. The predicted performances for these cou-
plings are verified by numerical experiments. It turned out that with the coupling only the
positive definite part of the operator in the correction equation can be controlled. For the
remaining, negative definite part a strategy is developped and verified by a numerical exper-
iment. The chapter concludes with a number of numerical experiments to indicate the overall
performance of the Jacobi-Davidson method in combination with solutions of the correction
equation obtained via the domain decomposition technique.


Where the approach in chapter 3 is of conceptual type, chapter 4 discusses practical as-
pects.
In many applications the eigenvalue problems exhibit coefficients that vary over the physi-
cal domain. It is shown experimentally how results from chapter 3 for the case of constant
coefficients may be applied to the case of variable coefficients. Several characteristic numer-
ical experiments accompany the discussion. Then attention is turned to more complicated
geometries.


In the final chapter it is shown that once a preconditioner based on domain decomposi-
tion is constructed, one may take more advantage of it by considering the different levels
of nesting in the Jacobi-Davidson method. For a high degree of parallelism, i.e. for a large
number of subdomains, the observed phenomenon becomes significant.


Chapter 2 has appeared as:


M. GENSEBERGER ANDG. L. G. SLEIJPEN, Alternative correction equations in the
Jacobi-Davidson method, Numer. Linear Algebra Appl., 6 (1999), pp. 235–253.


Chapter 3 is submitted for publication.







Chapter 2


Alternative correction equations
in the Jacobi-Davidson method


Menno Genseberger and Gerard Sleijpen


Abstract


The correction equation in the Jacobi-Davidson method is effective in a subspace
orthogonal to the current eigenvector approximation, whereas for the continua-
tion of the process only vectors orthogonal to the search subspace are of impor-
tance. Such a vector is obtained by orthogonalizing the (approximate) solution
of the correction equation against the search subspace. As an alternative, a vari-
ant of the correction equation can be formulated that is restricted to the subspace
orthogonal to the current search subspace. In this chapter, we discuss the effec-
tiveness of this variant.
Our investigation is also motivated by the fact that the restricted correction equa-
tion can be used for avoiding stagnation in case of defective eigenvalues. More-
over, this equation plays a key role in the inexact TRQ method [51].


Keywords: Eigenvalues and eigenvectors, Jacobi-Davidson method


AMS subject classification:65F15, 65N25
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2.1 Introduction


For the computation of a few eigenvalues with associated eigenvectors of largen-dimensional
linear eigenvalue problems


Ax = λx (2.1)


subspace methods have become very popular. The application of a subspace method is at-
tractive when the method is able to calculate accurate solutions to (2.1) from relatively low
dimensional subspaces, i.e.m � n with m the dimension of the subspace. Keepingm small
enables a reduction in computational time and memory usage.


There are many ways to construct a subspace and different options are possible for a sub-
space method. Globally three stages can be distinguished in such a method:


• Calculation of an approximation to the eigenpair inside the search subspace.


• Computation of new information about the behavior of operatorA.


• Expansion of the search subspace with vector(s) containing this information.


In the Jacobi-Davidson method [46], Sleijpen and Van der Vorst propose to look for new
information in the space orthogonal to the approximate eigenvector. A correction equation


(In − umu∗m)(A− θmIn)(In − umu∗m)t = −rm, (2.2)


is defined on this space. Here(θm,um) is the current approximate eigenpair with residual
rm ≡ Aum − θmum. A correctiont to the approximate eigenvectorum is obtained by
solving (2.2) approximately. Then the search subspaceVm is expanded toVm+1 with the
component oft orthogonal toVm. One of the eigenvaluesθm+1 of the projection of matrix
A on the new search subspace is selected. InsideVm+1 the so-called Ritz pair(θm+1,um+1)
is considered to be an optimal approximation to the wanted eigenpair(λ,x).


As the residual of a Ritz pair is orthogonal to the subspace this special choice of the ap-
proximation introduces some freedom for the projection of the correction equation. Another
possibility is looking for a correction in the space orthogonal to the search subspace con-
structed so far. If the Ritz pair is indeed the “best” approximation inside the search subspace,
then we should expect that really new information lies in the orthogonal complement ofVm.
This suggests a more restrictive correction equation


(In −VmV∗
m)(A− θmIn)(In −VmV∗


m)t = −rm, (2.3)


that will be investigated here. In equation (2.3),Vm is ann bym matrix of which the columns
form an orthonormal basis of the current search subspaceVm.


Although the approach in (2.3) does not seem to be unnatural, it is not clear whether it
is more effective in practical computations. In general, the solutions of (2.2) and (2.3) do
not lead to the same expansion of the search subspaces. Therefore, a different convergence
behavior of the Jacobi-Davidson process is to be expected.


The projection in (2.3) is more expensive, but the method for solving the correction equa-
tion may profit from projecting on a smaller subspace. To see this, note thatA − θmIn is
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nearly singular ifθm ≈ λ. RestrictingA − θmIn to the space orthogonal to the approx-
imate eigenvectorum will give a well-conditioned operator in caseλ is simple and fairly
well isolated from the other eigenvalues. Projecting on the space orthogonal toVm may fur-
ther improve the conditioning. If eigenvalues cluster around the target eigenvalueλ then the
associated eigenvectors should be removed as well. The search subspace may be expected
to contain good approximations also of these eigenvectors [26,§3.4] and projecting on the
space orthogonal toVm may lead to a well-conditioned operator also in case of clustering
eigenvectors. A reduction may be expected in the number of steps that are needed to solve
the correction equation to a certain accuracy if an iterative linear solver is used. It also im-
proves the stability of the linear solver. These effects may compensate for the more expen-
sive steps. For precisely these reasons, a strategy is followed in [22, 17] whereum in (2.2)
is replaced by the matrix of all Ritz vectors that could be associated with eigenvalues in a
cluster near the target eigenvalue.


GMRESR1 [59] and GCRO2 [18] are nested methods for solving linear systemsAx = b
iteratively. They both use GCR in the “outer loop” to update the approximate solution and
GMRES in the “inner loop” to compute a new search direction from a correction equation.
As argued in [25], Jacobi-Davidson with (2.2) can be viewed as the eigenvalue version of
GMRESR, while Jacobi-Davidson with (2.3) is the analogue of GCRO. GCRO employs the
search subspace to improve the convergence of GMRES for the solution of a correction equa-
tion (see also [19]). Experiments in [18, 5] for linear systems of equations show that GCRO
can be more effective than GMRESR: for linear problems it appears to be worthwhile to use
more expensive projections. Is this also the case for eigenvalue problems? If, for a linear
system, the correction equation is solved exactly then both GMRESR and GCRO produce
the exact solution of the linear system in the next step. However, eigenvalue problems are
not linear and even if all correction equations are solved exactly still a number of steps may
be needed to find accurate approximations of an eigenpair. Replacingum in (2.2) byVm


may lead to an increase in the number of iteration steps. The loss in speed of convergence
may not be compensated by the advantage of a better conditioned correction equation (2.3).
In practical computations the situation is even more complicated since the correction equa-
tions will be solved only with a modest accuracy.


Jacobi-Davidson itself may also profit from projecting on a smaller subspace. If the Ritz
value is a defective eigenvalue of the interaction matrixV∗


mAVm then the correction equa-
tion (2.2) may have a solution in the current search subspace. In such a case the search sub-
space is not expanded and Jacobi-Davidson stagnates. Correction equation (2.3) will give
a proper expansion vector and stagnation can be avoided [48]. In practical computations,
where the correction equations are not solved exactly, it is observed that stagnation also can
be avoided by a strategical and occasional use of (2.3).


Equation (2.3) also plays a key role in the inexact Truncated RQ iteration [51] of Sorensen
and Yang (see also§§2.2.3 and 2.4.1). This provides another motivation for studying the ef-
fect of using (2.3) in Jacobi-Davidson.


This chapter is organized as follows. First, in§2.2 we recall some facts about projecting


1Generalized Minimum Residual Recursive
2Generalized Conjugate Residual with Orthogonalization in the inner iteration
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the eigenvalue problem. An alternative derivation of a more general correction equation is
given to motivate the correction equation (2.3). It appears that (2.3) and the original correc-
tion equation (2.2) are the extremal cases of this general correction equation. Next, in§2.3,
an illustration is given in which the two correction equations can produce different results.
We will show that, if the process is started with a Krylov subspace then the two exact solu-
tions of the correction equations lead to mathematically equivalent results (§2.4). We will
also argue that in other situations the correction equation (2.3) will lead to slower conver-
gence. In§2.5 we conclude with some numerical experiments; partially as an illustration of
the preceding, partially to observe what happens if things are not computed in high precision
and whether round-off errors play a role of importance.


2.2 The framework: the Jacobi-Davidson method


We start with a brief summary of the Rayleigh-Ritz procedure. This procedure, where the
large eigenvalue problem is projected on a small one, serves as a starting point for the deriva-
tion of a more general correction equation. We will consider the two extremal cases of this
equation. One corresponds to the correction equation of the original Jacobi-Davidson method,
the other one is employed in the inexact Truncated RQ iteration.


2.2.1 Interpolation: Rayleigh-Ritz procedure


Suppose somem-dimensional subspaceVm is available. LetVm be ann×m dimensional
matrix such that the column-vectors ofVm form an orthonormal basis ofVm. The orthogonal
projection ofA on the subspace (the Rayleigh quotient or interaction matrix) will then be
Hm ≡ V∗


mAVm.
Furthermore suppose that we selected a Ritz pair(θm,um) of A with respect toVm, i.e.


a scalarθm and a vectorum ∈ Vm such that the residualr(θm,um) ≡ rm ≡ Aum−θmum


is orthogonal toVm. A Ritz pair can considered to be an optimal approximation inside the
subspace to an eigenpair(λ,x) of the matrixA in some sense (in [37,§11.4] this is argued
for the real symmetric case).


The Ritz values are equal to the eigenvalues ofHm. Therefore they can be computed by
solving them-dimensional linear eigenvalue problemHms = θs. The Ritz vector associ-
ated withθ is Vms.


2.2.2 Extrapolation: correction equation


How well does the Ritz pair(θm,um) approximate an eigenpair(λ,x) of matrixA? With
a view restricted to the subspace there would be no better alternative. But outsideVm a re-
mainderrm is left. The norm of this residual gives an indication about the quality of the
approximation. Let us try to minimize this norm.


For that purpose, consideru′ = um + t andθ′ = θm + ε. Define the residualr′ ≡
Au′ − θ′u′ = rm + At − θmt − εum − εt. If we view ε andt as first order corrections
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thenεt represents some second order correction (cf. [36], [52]). Ignoring this contribution
results in


r′ = rm + (A− θmIn)t− εum. (2.4)


Consider some subspaceW such thatum ∈ W ⊆ Vm. With W, a matrix of which the
column-vectors form an orthonormal basis forW , we decompose (2.4) (cf. [44]) in


WW∗r′ = WW∗(A− θmIn)t− εum,


the component ofr′ in W, and in


(In −WW∗)r′ = (In −WW∗)(A− θmIn)t + rm, (2.5)


the component ofr′ orthogonal toW .
The new directiont will be used to expand the subspaceVm toVm+1. An approximation


(θm+1,um+1) is computed with respect toVm+1. BecauseW ⊆ Vm ⊆ Vm+1 the residual
rm+1 of this Ritz pair is also orthogonal toW. This means that if we write(θm+1,um+1) =
(θm + ε,um + t) then only (2.5) gives a contribution to the norm ofrm+1:


‖rm+1‖ = ‖(In −WW∗)(A− θmIn)t + rm‖. (2.6)


So to get a smaller norm in the next step we should calculatet such that


(In −WW∗)(A− θmIn)t = −rm. (2.7)


Note that ift = um then there is no expansion of the search space. So it can be assumed
thatt 6= um. As we are free to scaleum to any length, we can require thatt ⊥ um. From
this it follows that ift 6= um then equation (2.7) and


(In −WW∗)(A− θmIn)(In − umu∗m)t = −rm (2.8)


can considered to be equivalent.
Drawback may be that the linear systems in (2.7) and (2.8) are underdetermined. The


operators(In−WW∗)(A−θmIn) and(In−WW∗)(A−θmIn)(In−umu∗m) mapt on
a lower dimensional subspaceW. The operator(In−WW∗)(A−θmIn)(In−WW∗) acts
only inside the space orthogonal toW . We expect this operator to have a more favourable
distribution of eigenvalues for the iterative method. In that case the correction equation reads


(In −WW∗)(A− θmIn)(In −WW∗)t = −rm. (2.9)


If the correction equation is solved (approximately) by a Krylov subspace method where the
initial guess is0, then no difference will be observed between (2.7) and (2.9). The reason
why is that(In −WW∗)2 = In −WW∗.
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2.2.3 Extremal cases


After m steps of the subspace method,Vm contains besidesum, m − 1 other independent
directions. Consequence: different subspacesW can be used in equation (2.7) provided that
span(um) ⊆ W ⊆ Vm. Here we will consider the extremal casesW = span(um) and
W = Vm.


The first case corresponds with the original Jacobi-Davidson method [46]:


(In − umu∗m)(A− θmIn)(In − umu∗m)t = −rm.


The operator in this equation can be seen as a mapping in the orthogonal complement ofum.
Let us motivate the other case. SupposeW is a subspace contained in, but not equal to


Vm. Then(In−WW∗) projects still some components of(A− θmIn)t insideVm. These
components will not contribute to a smaller norm in (2.6). To avoid this overhead of already
known information it is tempting to takeW = Vm:


(In −VmV∗
m)(A− θmIn)(In − umu∗m)t = −rm. (2.10)


Furthermore, ifW = Vm then equation (2.9) becomes


(In −VmV∗
m)(A− θmIn)(In −VmV∗


m)t = −rm.


In the following with JD and JDV we will denote the Jacobi-Davidson method which uses
(2.2) and (2.3) respectively as correction equation. Theexactsolution of (2.2) will be de-
noted bytJD, while tJDV denotes theexactsolution of (2.3). With an “exact” process we refer
to a process in exact arithmetic in which all correction equations are solved exactly. Note
that bothtJD andtJDV are solutions of (2.10). As we will illustrate in an example in§2.3, the
solution set of (2.10) may consist of more than two vectors. In fact, this set will be an affine
space of dimension dim(Vm), while generally (2.2) and (2.3) will have unique solutions. For
this reason, we will refer to equation (2.10) as the “in between” equation.


An equation similar to (2.3) appears in the truncated RQ-iteration of Sorensen and Yang
[51]. In every step of this method the solution of the so-called TRQ equations is required.
For the application of an iterative solver the authors recommend to use


(In −VmV∗
m) (A− µIn) (I−VmV∗


m) ŵ = fm (2.11)


instead of the TRQ equations. Hereµ is some shift which may be chosen to be fixed for some
TRQ-iteration steps whereas in Jacobi-Davidsonθm is an optimal shift which differs from
step to step. Also here Sorensen and Yang expect (2.11) to give better results due to the fact
that
(In −VmV∗


m) (A− µIn) (I−VmV∗
m) has a more favourable eigenvalue distribution than


A− µI whenµ is near an eigenvalue ofA (see also the remark at the end of§2.4.1).


2.2.4 Convergence rate


The derivation in§2.2.2 of the alternative correction equations may suggest that expansion
with an exact solutiont of (2.10) would result in quadratic convergence (cf. [50]) like the
original Jacobi-Davidson method ([46,§4.1], [44, Th.3.2]). Let us take a closer look.
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As in§2.2.2, consider the residualrm+1 associated with(θm+1,um+1) = (θm+ε,um+
t).
If t ⊥ um is the exact solution of (2.2) andε is chosen such thatrm+1 is orthogonal toum


then it can be checked thatrm+1 is equal to a quadratic term (rm+1 = −εt), which virtually
proves quadratic convergence. (Note: we are dealing not only with the directionsum andt
but with a search subspace from which the new approximation is computed, there could be
an update forum that is even better thant.)
If t solves (2.10) exactly then, by construction, the component of the residual orthogonal
to Vm consists of a second order term. However, generally the component ofrm+1 in the
spaceVm contains first order terms (see§2.3) and updatingum with this exact solutiont of
(2.10) does not lead to quadratic convergence. One may hope for better updates in the space
spanned byVm andt, but, as we will see in our numerical experiments in§2.5.1.1, equation
(2.3), and therefore also (2.10), do not lead to quadratic convergence in general.


2.3 Two examples


The two following simple examples give some insight into the differences between the three
correction equations (2.2), (2.10), and (2.3).


2.3.1 Different expansion of the subspace


Consider the following matrix


A =








0 β c∗1
0 α c∗2
d1 d2 B





 ,


with α andβ scalars,c1, c2,d1 andd2 vectors andB a non-singular matrix of appropriate
size.


Suppose we already constructed the subspaceV2 = span(e1, e2) and the selected Ritz
vectoru2 is e1. Then the associated Ritz valueθ2 equals0,


r2 =








0
0
d1





 ,


while (I− e1e∗1)A(I− e1e∗1), (I−V2V∗
2)A(I− e1e∗1), and(I−V2V∗


2)A(I−V2V∗
2)


are equal to








0 0 0∗


0 α c∗2
0 d2 B





 ,








0 0 0∗


0 0 0∗


0 d2 B





 , and








0 0 0∗


0 0 0∗


0 0 B





 ,
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respectively. From this it is seen that JD computes its correction from


(


α c∗2
d2 B


)(


γ
t′


)


= −
(


0
d1


)


,


the “in between” from
(


d2 B
)


(


γ
t′


)


= −d1,


and JDV from
Bt′ = −d1.


Let t′i be the solution ofBt′i = −di (i = 1, 2). Then the component oftJDV for JDV
orthogonal toV2 is represented byt′1 (to be more precise,tJDV = (0, 0, t′1


T)T), while the
orthogonal component for JD is represented by a combination oft′1 andt′2: tJD = (0, γ, (t′1+
γt′2)


T)T. So in general, whend2 is not a multiple ofd1 and whenγ 6= 0, JD and JDV will
not produce the same expansion ofV2. Note that(I− e1e∗1)A(I− e1e∗1) is non-singular on
e⊥1 if and only if α 6= −c∗2t


′
2. The “in between” differs from JD and JDV in that it has no


extra constraint forγ. Takingγ = −c∗2t
′
1/(α + c∗2t


′
2) gives JD, takingγ = 0 gives JDV.


Finally, as an illustration of§2.2.4, we calculate the new residual associated withu3 =
u2 + t andθ3 = θ2 + ε. We takeβ = 0. The new residual for the “in between” equals


r3 =








c∗1t
′ − ε


αγ + c∗2t
′ − εγ


−εt′





 .


If γ = −c∗2t
′
1/(α+c∗2t


′
2) (as for JD) then the choiceε = c∗1t


′ reduces the terms inr3 to sec-
ond order ones, while no clever choice forε can achieve this ifγ is not close to−c∗2t


′
1/(α+


c∗2t
′
2).


2.3.2 Stagnation


The example in this section shows that JD may stagnate where JDV expands.
Consider the matrixA of §2.3.1, but now takeβ = 1, α = 0 andd2 = d1.


As initial space, we takeV1 = span{e1}. Thenu1 = e1 andr1 = (0, 0,dT
1)


T. Any of
the three approaches find−e2 as expansion vector:V2 = span{e1, e2}. Nowu2 is againe1


and JD stagnates:tJD = −e2 belongs already toV2 and does not lead to an expansion ofV2.
The JDV correction vectortJDV is equal to(0, 0, (B−1d1)T)T and expandsV2.


2.4 Exact solution of the correction equations


If, in the example in§2.3.1,d1 andd2 are in the same direction, or equivalently, if the resid-
uals of the Ritz vectors are in the same direction, then exact JD and exact JDV calculate
effectively the same expansion vector. One may wonder whether this also may happen in
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more general situations. Before we discuss this question, we characterize the situation in
which all residuals are in the same direction.


All residuals of Ritz vectors with respect to some subspaceVm are in the same direction
if and only if the components orthogonal toVm of the vectorsAv are in the same direction
for all v ∈ Vm. It is easy to see and well known thatVm has this last property if it is a
Krylov subspace generated byA (i.e.,Vm = Km(A,v0) = span({Aiv0 | i < m}) for
some positive integerm and some vectorv0). The converse is also true as stated in the fol-
lowing lemma. We will tacitly assume that all Krylov subspaces that we will consider in the
remainder of this chapter, are generated byA.


LEMMA 1 For a subspaceVm the following properties are equivalent.
(a)Vm is a Krylov subspace,
(b) AVm ⊂ span(Vm,v) for somev ∈ AVm.


Proof. We prove that (b) implies (a). The implication “(a)⇒ (b)” is obvious.
If the columns of then by m matrixVm form a basis ofVm then (b) implies thatAVm =
[Vm,v]H for somem + 1 by m matrixH. There is an orthogonalm by m matrixQ such
that ˜H := Q′∗HQ is upper Hessenberg. HereQ′ is them + 1 by m + 1 orthogonal matrix
with m bym left upper blockQ and(m+1,m+1) entry equal to 1.Q can be constructed as
product of Householder reflections.3 HenceA˜Vm = [˜Vm,v] ˜H, where˜Vm ≡ VmQ. Since
˜H upper Hessenberg, this implies thatVm is a Krylov subspace (of orderm) generated by
the first column of˜Vm. �


We will see in Cor. 4 that exact JD and exact JDV coincide after restart with a set of Ritz
vectors taken from a Krylov subspace. The proof uses the fact, formulated in Cor. 1, that
any collection of Ritz vectors ofA with respect to a single Krylov subspace span a Krylov
subspace themselves. This fact can be found in [34,§3] and is equivalent to the statement in
[53, Th.3.4] that Implicit Restarted Arnoldi and unpreconditioned Davidson (i.e., Davidson
with the trivial preconditionerIn) generate the same search subspaces. However, the proof
below is more elementary.


COROLLARY 1 If Vm is a Krylov subspace and if{(θ(i)
m ,u(i)


m ) | i ∈ J} is a subset of Ritz


pairs ofA with respect toVm then the Ritz vectorsu(i)
m (i ∈ J) span a Krylov subspace.


Proof. Assume thatVm is a Krylov subspace. Then (b) of Lemma 1 holds and, in view of
the Gram-Schmidt process, we may assume that the vectorv in (b) is orthogonal toVm .
SinceAu(i)


m − θ(i)
m u(i)


m ⊥ Vm, (b) of Lemma 1 implies thatAu(i)
m − θ(i)


m u(i)
m ∈ span(v).


HenceAu(i)
m ∈ span(U ,v), whereU is the space spanned by the Ritz vectorsu(i)


m (i ∈ J),
and the corollary follows from Lemma 1. �


3Here the refections are defined from their right action on them + 1 by m matrix and work on the rows from
bottom to top, whereas in the standard reduction to Hessenberg form of a square matrix they are defined from their
left action and work on the columns from left to right.
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2.4.1 Expanding a Krylov subspace


In this section,Vm is a subspace,Vm a matrix of which the columns form an orthonormal
basis ofVm, (θm,um) a Ritz pair ofA with respect toVm, andrm is the associated residual.
Further, we assume that(In −VmV∗


m)(A − θmIn)(In −VmV∗
m) is non-singular onV⊥m,


that is (2.3) has a unique solution, and we assume thatrm 6= 0, that isum is not converged
yet.
The assumptionrm 6= 0 implies thattJDV 6= 0 andAum 6∈ Vm.


Note that (cf. [46], [39])


tJD = −um + ε(A− θmIn)−1um for ε =
u∗mum


u∗m(A− θmIn)−1um
. (2.12)


THEOREM 1 Consider the following properties.
(a)Vm is a Krylov subspace.
(b) span(Vm, t) ⊂ span(Vm, tJDV) for all solutionst of (2.10).
(c) span(Vm, tJD) is a Krylov subspace.


Then (a)⇔ (b)⇒ (c).


Proof. Consider a solutiont of (2.10). We first show the intermediate result that


span(Vm, t) = span(Vm, tJDV) ⇔ γAum + AVm(V∗
mt) ∈ Vm for someγ 6= 1.


(2.13)
If we decomposet in


t = ˜t + Vms with ˜t ≡ (In −VmV∗
m)t and s ≡ V∗


mt (2.14)


then we see that (2.10) is equivalent to


(In−VmV∗
m)(A− θIn)(In−VmV∗


m)˜t = −rm− (In−VmV∗
m)(A− θIn)Vms. (2.15)


The vectors˜t andt lead to the same expansion ofVm. A combination of (2.3) and (2.15)
shows thattJDV andt lead to the same expansion ofVm if and only if


(1− γ′)rm + (In −VmV∗
m)(A− θIn)Vms = 0 for some scalarγ′ 6= 0; (2.16)


use the non-singularity restriction for the “if-part”. Since(In −VmV∗
m)Vm = 0, (2.16) is


equivalent to(1− γ′)Aum + AVms ∈ Vm, which proves (2.13).
“(a) ⇒ (b)”: Sincerm 6= 0, we see thatAum 6∈ Vm. Therefore, if (a) holds then (see


Lemma 1) we have thatAVm(V∗
mt) ∈ span(Vm,Aum) and (2.13) shows that (b) holds.


“(b) ⇒ (c)”: Note that the kernelN of the operator in (2.10) consists of the vectorss ≡
t − tJDV with t a solution of (2.10). Since (2.3) has a unique solution, we see that none of
the non-trivial vectors inN is orthogonal toVm. Therefore, the spaceN and the space of
all vectorsV∗


ms (s ∈ N ) have the same dimension which is one less than the dimension
of Vm. From (2.13) we see that (b) implies thatAVm(V∗


ms) ∈ span(Vm,Aum) for all
s ∈ N . Sinces = t − tJDV ⊥ um, we see thatum is independent ofAVm(V∗


ms) for all
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s ∈ N . Therefore, in view of the dimensions of the spaces involved we may conclude that
AVm ∈ span(Vm,Aum), which, by Lemma 1, proves (a).


“(a)⇒ (c)”: If Vm is a Krylov subspace of orderm generated byv0, that is if (a) holds,
then, also in view of (2.12), we have that


span(Vm, tJD) = span(Vm, (A−θIn)−1um) ⊂ {q(A)[(A−θIn)−1v0] | q pol. degree≤ k}.


The inclusion follows easily from the representation ofVm asVm = {p(A)v0|p pol. degree<
k}. If (A−θIn)−1um 6∈ Vm then a dimension argument shows that the subspaces coincide
which proves that span(Vm, tJD) is a Krylov subspace. If(A− θIn)−1um ∈ Vm then there
is no expansion and the Krylov structure is trivially preserved. �


Lemma 1 implies that anyn−1 dimensional subspace is a Krylov subspace. In particular,
span(Vm, tJD) is a Krylov subspace ifVm is n − 2-dimensional and it does not containtJD.
From this argument it can be seen that (c) does not imply (a).


SincetJD is also a solution of (2.10), we have the following.


COROLLARY 2 If Vm is a Krylov subspace thenspan(Vm, tJD) ⊂ span(Vm, tJDV). �


If θm is simple thentJD 6∈ Vm and the expanded subspaces in Cor. 2 coincide. However,
as the example in§2.3.2 shows, JD may not always expand the subspace. Note that, in ac-
cordance with (c) of Th. 1, the subspaceV2 in this example is a Krylov subspace (generated
by A andv0 = e2 − e1).


Cor. 2 does not answer the question whethertJD andtJDV lead to the same expansion of
Vm only if Vm is a Krylov subspace. The example in§2.3 shows that the answer can be
negative, namely iftJD ⊥ Vm: thenγ = V∗


mtJD = 0. The answer can also be negative in
cases wheretJD 6⊥ Vm, provided that the dimension of the subspaceVm is larger than 2. The
following theorem characterizes partially the situation where we obtain the same expansion.
Note thatVm is a Krylov subspace if and only if the dimension ofAVm ∩Vm is at most one
less than the dimension ofVm (see Lemma 1).


THEOREM 2 If span(Vm, tJD) ⊂ span(Vm, tJDV) thenAVm ∩ Vm 6= {0} or tJD ⊥ Vm.


Proof. If tJD andtJDV give the same expansion then (2.13) shows thatγAum+AVm(V∗
mtJD) ∈


Vm. Apparently,AVm ∩ Vm 6= {0} or γ = 0 andV∗
mtJD = 0. A similar argument applies


to the case wheretJD ∈ Vm. �


In practical situations, whereVm is constructed from inexact solutions of the correction
equations it will be unlikely thatAVm will have a non-trivial intersection withVm (unless
the dimension ofVm is larger thann/2). UsuallytJD 6⊥ Vm. Therefore, the exact expansion
vectorstJD andtJDV will not lead to same expansions, and we may not expect that inexact
expansion vectors will produce the same expansions.


The correction equation (2.11) in inexact TRQ is based on a Krylov subspace: the matrix
Vm in this algorithm is produced by the Arnoldi procedure whenever equation (2.11) has to
be solved.
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2.4.2 Starting with one vector


As any one dimensional subspace is a Krylov subspace, one consequence of Theorem 1 is the
following corollary. The proof follows by an inductive combination of Th. 1(c) and Cor. 2.


COROLLARY 3 Exact JD and exact JDV started with the same vectoru1 are mathemati-
cally equivalent as long as exact JD expands, i.e., they produce the same sequence of search
subspaces in exact arithmetic.


2.4.3 (Re-)Starting with several Ritz vectors


Once we start JD and JDV with one vector the dimension of the search subspace starts in-
creasing. After a number of steps a restart strategy must be followed to keep the required
storage limited and the amount of work related to the search subspace low. The question is
which information should be thrown away and which should be kept in memory. A popular
strategy is to select those Ritz pairs that are close to a specified shift/target. Cor. 1 and an in-
ductive application of Theorem 1 imply that, with a one-dimensional initial start and restarts
with the selected Ritz vectors, restarted exact JD and restarted exact JDV are mathematically
equivalent.


COROLLARY 4 Exact JD and exact JDV are mathematically equivalent as long as exact
JD expands if they are both started with the same set of Ritz vectors ofA with respect to one
Krylov subspace.


In practice, we have to deal with round off errors and the correction equations can only
be solved with a modest accuracy. Therefore, even if we start with one vector or a Krylov
subspace, the subsequent search subspaces will not be Krylov and the results in the above
corollaries do not apply. If a search subspace is not Krylov, then from Th. 1 we learn that
the “in between” variant may lead to expansions different from those of JDV. Th. 2 indicates
that also JD will differ from JDV.


2.5 Numerical experiments


Here a few numerical experiments will be presented. We will see that JDV and JD show
comparable speed of convergence also in finite precision arithmetic as long as the correc-
tion equations are solved in high precision (§2.5.1.1). JDV converges much slower than JD
if the Krylov structure of the search subspace is seriously perturbed. We will test this by
starting with a low dimensional random space (§2.5.1.1). We will also see this effect in our
experiments where we solved the correction equations only in modest accuracy (§2.5.1.2).
Moreover, we will be interested in the question whether the slower convergence of JDV in
case of inaccurate solutions of the correction equations can be compensated by a better per-
formance of the linear solver for the correction equation (§2.5.2.1). Further, some stability
issues will be addressed (§2.5.1.3).
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FIGURE 2.1. Convergence plots for Example 1. Differences betweenJD andJDV when not solving the cor-
rection equation exactly(left plot) and when starting with an unstructured 5-dimensional subspace(right plot). The
plots show the log10 of the error|θm − λ| in the Ritz valueθm versus the iteration numberm.
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2.5.1 Example 1


In the experiments in this section 2.5.1, we apply the Jacobi-Davidson method on a tridiago-
nal matrix of order 100 with diagonal entries 2.4 and off-diagonal entries 1 ([46, Ex. 1]). Our
aim is the largest eigenvalueλ = 4.3990 . . .. We start with a vector with all entries equal to
0.1.


2.5.1.1 Exact solution of the correction equation


When solving the correction equations exactly no difference between JD and JDV is ob-
served (dash-dotted line in left plot in Fig. 2.1) which is in accordance with Cor. 3. The
plots show the log10 of the error|θm − λ| in the Ritz valueθm versus the iteration number
m.


To see the effect of starting with an arbitrary subspace of dimension larger than 1 we
added four random vectors to the start vector with all entries equal to0.1. The right plot in
Fig. 2.1 shows the convergence of exact JD (solid curve) and JDV (dashed curve). Here the
results ofseed(253) in ourMATLAB -code are presented (other seeds showed similar con-
vergence behavior). The correction equations have been solved “exactly”, that is to machine
precision. As anticipated in§2.4.1 (see Th. 2) the convergence behavior of JDV now clearly
differs from that of JD. Moreover, the speed of convergence of JDV seems to be much lower
than of JD (linear rather than cubic? See§2.2.4). Apparently, expanding withtJDV rather than
with tJD may slow down the convergence of Jacobi-Davidson considerably in case the initial
subspace is not a Krylov subspace.


Note that JD performs slightly better with the five-dimensional start than with the one-
dimensional start (compare the solid curve in the right plot with de dashed-dotted curve in
the left plot). This may be caused by the extra (noisy) search directions.
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2.5.1.2 Approximate solution of the correction equation


If the correction equations are not solved in high precision, we may not expect the con-
structed search subspacesVm to be Krylov subspaces, even if the process is started with a
Krylov subspace. ConsequentlytJD andtJDV, and therefore their inexact approximations, will
not lead to the same expansions ofVm. In view of the experimental result in§2.5.1.1, we ex-
pect the inexact JDV to converge slower than inexact JD.


Again we start with one vector, but we use only 5 steps of GMRES to get an approximate
solution of the correction equation in each outer iteration. The solid line (JD) and the dashed
line (JDV) in the left plot of Fig. 2.1 show the results. JDV needs significantly more outer
iterations for convergence than JD.


2.5.1.3 Loss of orthogonality


The (approximate) solution of (2.2) in JD will in general not be orthogonal toVm. Therefore,
this solution is orthonormalized againstVm before it is used to expandVm to Vm+1. We
refer to this step in the algorithm aspost-orthogonalization (of the solution of the correction
equation). In JDV, however, if the correction equation (2.3) is solved with, for instance, GM-
RES, then the (approximate) solution should be orthogonal toVm and post-orthogonalization,
i.e., the explicit orthogonalization before expandingVm, should be superfluous. This obser-
vation would offer a possibility of saving inner products. Here we investigate what the effect
is of omitting the post-orthogonalization in JDV.


Again JDV is applied on the simple test matrix with the same starting vector as before
and the correction equations are solved approximately with 5 steps of GMRES. As initial
approximate solution for GMRES we take the zero vector.


From the experiment we learn that without post-orthogonalization the basis of the search
subspace in JDV loses its orthogonality. As a measure for the orthonormality ofVm we took
(see [37,§13.8])κm ≡ ‖Im−V∗


mVm‖. Table 2.1 lists the values of the error|λ−θm| and the
quantityκm for the first 10 outer iterations. Column two and three (“with post-ortho.”) show
the results for the implementation of JDV where the approximate solution of the correction
equation is explicitly orthogonalized againstVm before it is used to expand this matrix. In
the columns four and five (“without post-ortho.”) we see that if the post-orthogonalization
is omitted then the loss of orthonormality starts influencing the error significantly after just 5
outer iterations. After 8 iterations the orthonormality is completely lost. This phenomenon
can be explained as follows.
The residual of the selected Ritz pair is computed asrm = Aum − θmum. Therefore, in
finite precision arithmetic, the residual will not be as orthogonal to the search subspace as
intended even ifVm would have been orthonormal. For instance, at the second iteration
of our experiment, we have an error‖V∗


2r2‖ equal to1.639e−13. With the norm of the
residual equal to0.02145 this results in a relative error of7.640e−12. Note that, specifically
at convergence, rounding errors inrm may be expected to lead to relatively big errors. In
each solve of the correction equation (2.3), GMRES is started with initial approximate0 and
the vectorrm is taken as the initial residual in the GMRES process.
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TABLE 2.1. The need of post-orthogonalization when usingJDV. For the simple test, theJDV correction
equation(2.3) is solved approximately with 5 steps ofGMRES. The table shows the error|λ − θm| in the Ritz
valueθm and the “orthonormality” of the basisVm of the search subspaces(κm = ‖Im−V∗


mVm‖) for the im-
plementation with post-orthogonalization of the solution of the correction equation(column two and three), without
post-orthogonalization(column four and five), and without post-orthogonalization, but with pre-orthogonalization
of the left-hand side vector of the correction equation(column six and seven).


with post-ortho. without post-ortho. with pre-ortho.
m |λ− θm| κm |λ− θm| κm |λ− θm| κm


1
2
3
4
5
6
7
8
9


10


1.903e−02
3.611e−03
1.856e−03
1.076e−03
7.480e−04
4.464e−04
3.454e−04
1.909e−04
1.317e−04
8.747e−05


2.220e−16
2.289e−15
2.314e−15
2.314e−15
2.316e−15
2.316e−15
2.317e−15
2.317e−15
2.317e−15
2.317e−15


1.903e−02
3.611e−03
1.856e−03
1.076e−03
7.480e−04
4.423e−04
4.135e−04
3.135e+00
7.004e+00
1.094e+01


2.220e−16
3.690e−14
1.426e−11
2.649e−09
6.621e−07
1.125e−04
2.710e−02
9.732e−01
1.940e+00
2.920e+00


1.903e−02
3.611e−03
1.856e−03
1.076e−03
7.480e−04
4.464e−04
3.454e−04
1.909e−04
1.317e−04
8.747e−05


2.220e−16
3.690e−14
4.567e−14
4.866e−14
5.920e−14
6.534e−14
7.490e−14
9.546e−14
9.548e−14
1.232e−13


Sincerm is supposed to be orthogonal againstVm, this vector is not explicitly orthog-
onalized againstVm, and the normalizedrm is simply taken as the first Arnoldi vector. In
the subsequent GMRES steps the Arnoldi vectors are obtained by orthogonalization against
Vm followed by orthogonalization against the preceding Arnoldi vectors. However, since
the first Arnoldi vector will not be orthogonal againstVm, the approximate GMRES solu-
tion will not be orthogonal againstVm. Adding this “skew” vector to the basis of the search
subspace will add to the non-orthogonality in the basis.
Columns six and seven (“with pre-ortho.”) of Table 2.1 show that post-orthogonalization
can be omitted as long as the residualrm is sufficiently orthogonal with respect toVm: the
post-orthogonalization is omitted here, but the right-hand side vector of the correction equa-
tion, the residualrm, is orthogonalized explicitly againstVm before solving the correction
equation (pre-orthogonalization). Since pre- and post-orthogonalization are equally expen-
sive and since pre-orthogonalization appears to be slightly less stable (compare theκm’s in
column 3 with those in column 7 of Table 2.1), pre-orthogonalization is not an attractive al-
ternative, but the experimental results confirm the correctness of the above arguments.


Note that our test matrix here is only of order100 and the effect of losing orthogonality
may become even more important for matrices of higher order.


Also in JD the finite precision residualrm of the Ritz pair will not be orthogonal to the
search subspace. Since even in exact arithmetic you may not expect the solution of the JD
correction equation (2.2) to be orthogonal toVm, post-orthogonalization is essential in the
JD variant. In our experiment, using finite precision arithmetic, we did not observe any sig-
nificant loss of orthogonality in the column vectors ofVm. Nevertheless, we also checked
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whether pre-orthogonalization ofrm before solving the correction equation would enhance
the convergence of JD. This was not the case: JD converged equally fast with and without
pre-orthogonalization.


In the remaining experiments we used post-orthogonalization in JDV, too.


2.5.2 Example 2


In this section we consider a slightly more realistic eigenvalue problem. We are interested
in the question whether the projections on the orthogonal complement ofVm in the JDV
approach may significantly improve the performance of the linear solver for the correction
equation.


For A we take the SHERMAN1 matrix from the Harwell-Boeing collection [21]. The
matrix is real unsymmetric of order1000. All eigenvalues appear to be real and in the interval
[-5.0449,-0.0003]. About 300 eigenvalues are equal to -1. We want to find a few eigenvalues
with associated eigenvectors that are closest to the targetσ. Our targetσ is set to -2.5. Note
that the “target” eigenvalues are in the “interior” of the spectrum, which make them hard to
find, no matter the numerical method employed.


In general, when started with a single vector, the Ritz values in the initial stage of the
process will be relatively inaccurate approximations of the target eigenvalueλ, that is, ifλ
is the eigenvalue closest toσ then for the first fewm we will have that|θm− λ|/|σ− λ| �
1. Therefore, as argued in [44,§9.4] (see also [25,§4.0.1]), it is more effective to replace
initially θm in the correction equation byσ (similar observations can be found in [33,§6]
and [52,§3.1]). As the search subspace will not contain significant components of the target
eigenvectors in this initial stage, the projections in (2.2) and (2.3) are not expected to be
effective. Therefore, we expanded the search subspace in the first few steps of our process
by approximate solutions of the equation


(A− σIn)t = −rm, (2.17)


which can be viewed as a generalized Davidson approach.
In the computations we did not use any preconditioning. We started JD and JDV with


the same vector, the vector of norm one of which all entries are equal. The algorithms were
coded inCand run on a Sun SPARCstation 4 using double precision.


2.5.2.1 Solving the correction equation in lower precision


Fig. 2.2 shows the log10 of the residual norm for JD (the solid curve) and for JDV (the dashed
curve). In this example, all correction equations (including (2.17)) have been solved with 50
steps of GMRES except where GMRES reached a residual accuracy of10−14 in an earlier
stage. In the first 5 steps of the outer iteration we took the approximate solution of the David-
son correction equation (2.17) as the expansion vector. As the correction equations are not
solved exactly, we expect that JD will need less outer iterations than JDV (see§§2.4.1 and
2.5.1.2), which is confirmed by the numerical results in the figure.
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FIGURE 2.2. The convergence history for the computation of eigenpairs with eigenvalue closest to−2.5
of the matrixSHERMAN1. The plot shows the log10 of the subsequent residual norms forJD (solid curve) and
JDV (dashed curve) versus the iteration numberm. A search for a next eigenpair is started when a Ritz pair is
accepted as eigenpair(i.e., if‖rm‖2 ≤ 5 10−8). The correction equations are approximately solved with 50 steps
of GMRES.
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As argued in§2.1, the projections on the orthogonal complement ofVm in the JDV cor-
rection equation (2.3) may improve the conditioning (or more general, the spectral proper-
ties) of the operator in the correction equation. This may allow a more efficient or a more
accurate way of solving the correction equation. Here we test numerically whether a bet-
ter performance of the linear solver for the correction equations can compensate for a loss
of speed of convergence in the outer iteration. In the figures in Fig. 2.3 we show how the
performance of JD and JDV and the computational costs relate. As a measure for the costs
we take the number of matrix-vector multiplications: we plot the log10 of the residual norm
versus the number of matrix-vector multiplications byA (or byA − θmIn). Note that this
way of measuring the costs favours JDV, since the projections in JDV are more costly than
in JD. Nevertheless, we will see that JD outperforms JDV.


We solve all correction equations with GMRES`, that is with` steps of GMRES, ex-
cept where GMRES reaches a residual accuracy of10−14 in an earlier stage. For̀we took
200 (top figure), 50 (middle figure), and 25 (bottom figure). In the first few outer itera-
tions the Davidson correction equation (2.17) is solved approximately (2 outer iterations for
` = 200 and 5 for` = 50 and for` = 25). When a Ritz pair is accepted as eigenpair (i.e., if
‖rm‖ ≤ 5 10−8), a search is started for the next eigenpair. The accepted Ritz pairs are kept
in the search subspace. Explicit deflation is used only in the correction equation (see [26]).
Note that the correction equations (2.3) in JDV need no modification to accommodate the
deflation, because accepted Ritz vectors are kept in the search space.
If GMRES would converge faster on JDV correction equations than on JD correction equa-
tions, then GMRES would need less steps for solving (2.3) in case the residual accuracy of
10−14 would be reached in less than` GMRES steps, while in the other case it would produce
more effective expansion vectors in JDV. With more effective expansion vectors the num-
ber of outer iterations may be expected to decrease. In both cases, there would be a positive
effect on the number of matrix-vector multiplications needed in JDV.
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TABLE 2.2. Costs for the computation of two eigenpairs ofSHERMAN1with JDandJDV. The costs(b) for
the computation of the second eigenpair(λ = −2.51545 . . .) include the costs(a) for the computation of the first
eigenpair(λ = −2.49457 . . .).


method for the number of outer number of matrix- wallclock time
correction equation iterations vector multiplications in seconds


JD JDV JD JDV JD JDV
GMRES200 (a) 4 4 798 790 64.1 64.3


(b) 7 7 1401 1393 114.7 119.5
GMRES50 (a) 14 20 715 1021 21.5 51.2


(b) 19 30 970 1531 35.0 121.1
GMRES25 (a) 26 37 677 963 41.3 143.0


(b) 33 47 859 1223 83.2 301.4


In Table 2.2 the number of outer iterations, the number of matrix-vector multiplications
and the amount of time needed for the computation for the first two eigenpairs
(λ = −2.49457 . . . andλ = −2.51545 . . .) are presented.


When solving the correction equation with 200 steps of GMRES no difference between
JD and JDV is observed (upper plot in Fig. 2.3). Apparently with 200 steps of GMRES the
correction equations are solved in high precision and the results are in line with the theory
and our previous experience. This can also be seen from Table 2.2. For the first eigenvalue
JD uses 8 more matrix-vector multiplications than the 790 from JDV. On the other hand JDV
takes a bit more time (about 0.2 seconds) than JD. From this we may conclude that, compared
with the costs of the matrix-vector multiplications and the QR-algorithm for the computation
of the eigenvalues of the projected matrix, the extra vector-vector operations involved in the
correction equation of JDV are not very expensive.


Although JD and JDV need the same amount of time for convergence when using 200 steps
of GMRES, the same eigenpairs can be computed in much less time. If 50 steps of GMRES
are used, JD takes only 21.45 seconds for computing the first eigenpair whereas JDV takes
2.5 times that amount.


The differences between the two methods become more significant if we lower the preci-
sion of the solver for the correction equation by using only 25 steps of GMRES. With the
same amount of matrix-vector multiplications the number of eigenpairs found by JD is much
higher than JDV. Note, that the measured time for both JD and JDV in the case of GMRES25
is more than in the case of GMRES50 whereas the number of matrix-vector multiplications
is less. The reason for this can only be the fact that in the case of GMRES25 more outer iter-
ations are needed, every outer iteration the eigenvalues of the projected matrix are computed
with a QR-algorithm.
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FIGURE 2.3. The effect of reducing the precision of the solution method for the correction equation. The
figures display the convergence history for the computation of eigenpairs with eigenvalue closest to−2.5 of the
matrixSHERMAN1. Plotted are the log10 of the subsequent residual norms forJD (solid curve) andJDV (dashed
curve) versus the number of matrix-vector multiplications. The correction equations are approximately solved with
200(top figure), 50 (center figure) and 25(bottom figure) steps ofGMRES.
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2.6 Conclusions


In GMRESR, an iterative method for solving linear systems of equations, it pays to restrict
the correction equations to the orthogonal complement of the space spanned by the search
vectors. This approach, called GCRO, leads to new search directions that are automatically
orthogonal with respect to the old ones. Although the restricted correction equations require
more complicated projections with higher computational costs per matrix-vector multipli-
cation, the number of matrix-vector multiplications may decrease tremendously leading to
a better overall performance [18, 5]. In this chapter, we investigated the question whether
such an approach would be equally effective for the Jacobi-Davidson method for solving the
eigenvalue problem. Note that eigenvalue problems are weakly non-linear.


When starting with a Krylov subspace and solving the correction equations exactly the
standard approach (JD) of Jacobi-Davidson and its variant JDV with the more restricted cor-
rection equations, are mathematically equivalent (§2.4). However, in practical situations,
where the correction equations are solved only in modest accuracy with finite precision arith-
metic, the JDV variant appears to converge much more slowly than JD. Although the re-
stricted correction equations in JDV may have spectral properties that are more favourable
for linear solvers, a better performance of the linear solvers for the correction equation in
JDV may not compensate for the slower convergence.
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Using domain decomposition in
the Jacobi-Davidson method
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Abstract


The Jacobi-Davidson method is suitable for computing solutions of largen-
dimensional eigenvalue problems. It needs (approximate) solutions of specific
n-dimensional linear systems. Here we propose a strategy based on a nonover-
lapping domain decomposition technique in order to reduce the wall clock time
and local memory requirements. For a model eigenvalue problem we derive op-
timal coupling parameters. Numerical experiments show the effect of this ap-
proach on the overall Jacobi-Davidson process. The implementation of the even-
tual process on a parallel computer is beyond the scope of this chapter.
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3.1 Introduction


The Jacobi-Davidson method [46] is a valuable approach for the solution of large (general-
ized) linear eigenvalue problems. The method reduces the large problem to a small one by
projecting it on an appropriate low dimensional subspace. Approximate solutions for eigen-
pairs of the large problem are obtained from the small problem by means of a Rayleigh-Ritz
principle. The key to the Jacobi-Davidson method is how the subspace is expanded. To keep
the dimension of the subspace, and consequently the size of the small problem, low it is es-
sential that all necessary information of the wanted eigenpair(s) is collected in the subspace
after a small number of iterations. Therefore, the subspace should be expanded with a vec-
tor that contains important information not already present in the subspace. The correction
equation of the Jacobi-Davidson method aims at prescribing such a vector.


But in itself, the correction equation poses a large linear problem, with size equal to the
size of the originating large eigenvalue problem. Because of this, most of the computational
work of the Jacobi-Davidson method arises from solving the correction equation. In practice
the eigenvalue problem is often so large that an accurate solution of the correction equation
is too expensive. However, often approximate solutions of the correction equation suffice to
obtain sufficiently fast convergence of the Jacobi-Davidson method. The speed of this con-
vergence depends on the accuracy of the approximate solution. Jacobi-Davidson lends itself
to be used in combination with a preconditioned iterative solver for the correction equation.
In such a case the quality of the preconditioner is critical.


Nonoverlapping domain decomposition methods forlinear systemshave been studied
well in the literature. Because of the absence of overlapping regions they have computational
advantages compared to domain decomposition methods with overlap. But much depends
on the coupling that should be chosen carefully.


In this chapter we will show how a nonoverlapping domain decomposition technique
[55, 56] can be incorporated in the correction equation of Jacobi-Davidson, when applied to
PDE type of eigenvalue problems. The technique is based on work by Tang and by Tan and
Borsboom for linear systems.


For a linear system Tang [57] proposed to enhance the system with duplicates in order to
enable an additive Schwarz method with minimal overlap (for more recent publications, see
for example [16], [32] and [28]). Tan and Borsboom [55, 56] refined this idea by introducing
more flexibility for the unknowns near the interfaces between the subdomains. In this way
additional degrees of freedom are created, reflected by coupling equations for the unknowns
near the interfaces and their virtual counterparts. Now, the key point is to tune these interface
conditions for the given problem in order to improve the speed of convergence of the iterative
solution method. This approach is very effective for classes of linear systems stemming from
advection-diffusion problems [55, 56].


The operator in the correction equation involves the matrix of the large eigenvalue prob-
lem shifted by an approximate eigenvalue. In the computational process, this shift will be-
come arbitrarily close to the desired eigenvalue. This is a situation that requires special at-
tention when applying the domain decomposition technique.


An eigenvalue problem is a mildly nonlinear problem. Therefore, for the computation
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of solutions to the eigenvalue problem one needs a nonlinear solver, for instance, a Newton
method. In fact, Jacobi-Davidson can be seen as an accelerated inexact Newton method [45].
Here, we shall, as explained above, combine the Jacobi-Davidson method with a Krylov
solver for the correction equation. A preconditioner for the Krylov solver is constructed with
domain decomposition. A similar type of nesting, but for general nonlinear systems, can be
found in the Newton-Krylov-Schwarz algorithms by Cai, Gropp, Keyes et al. in [9] and [10].
In these two papers the subdomains have overlap, therefore there is no analysis for the tuning
of the coupling between subdomains. Furthermore, the eigenvalue problem is nonlinear but
with a specific structure; we will exploit this structure.


This chapter is organized as follows. First, we recall the enhancement technique for do-
main decomposition in§3.2. Then, in§3.3 we discuss the Jacobi-Davidson method. We out-
line how the technique can be applied to the correction equation and how the projections in
the correction equation should be handled. For a model eigenvalue problem we investigate,
in §3.4, in detail how the coupling equations should be chosen for optimal performance. It
will turn out that the shift plays a critical role. Section§3.5 gives a number of illustrative
numerical examples.


3.2 Domain decomposition


3.2.1 Canonical enhancement of a linear system


Tang [57] has proposed the concept of matrix enhancement, which gives elegant possibilities
for the formulation of effective domain decomposition of the underlying PDE problem. The
idea is to decompose the grid into nonoverlapping subgrids and to expand the subgrids by
introducing additional gridpoints and additional unknows along the interfaces of the decom-
position. This approach artificially creates some overlap on gridpoint level and the overlap
is minimal. For hyperbolic systems of PDEs, this approach was further refined by Tan in
[56] and by Tan and Borsboom in [55]. Discretization of the PDE leads to a linear system of
equations. Tang duplicates and adjusts those equations in the system that couple across the
interfaces. Tan and Borsboom introduce a double set of additional gridpoints along the inter-
faces in order to keep each equation confined to one expanded subgrid. As a consequence,
none of the equations has to be adjusted. Then they enhanced the linear system by ‘new’
equations that can be viewed as discretized boundary conditions for the internal boundaries
(along the interfaces). Since the last approach offers more flexibility, this is the one we fol-
low.


We start with the linear nonsingular system


By = d, (3.1)


that results from discretization of a given PDE over some domain. Now, we partition the
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matrixB, and the vectorsy andd correspondingly,














B11 B1` B1r B12


B`1 B`` B`r B`2


Br1 Br` Brr Br2


B21 B2` B2r B22














,














y1


y`


yr


y2














and














d1


d`


dr


d2














.


The labels are not chosen arbitrarily: we associate with label1 (and2, respectively) elements-
/operations of the linear system corresponding to subdomain1 (2, respectively) and with la-
bel ` (resp. r) elements/operations corresponding to the left (resp. right) of the interface
between the two subdomains. The central blocksB``, B`r, Br` andBrr are square matrices
of equal size, say,ni by ni. They correspond to the unknowns along the interface. Since
the number of unknowns along the interface will typically be much smaller than the total
number of unknows,ni will be much smaller thann, the size ofB.


For a typical discretization, the matrixB is banded and the unknowns are only locally
coupled. Therefore, under adequate ordering we can manage thatBr1,B21,B12 andB`2
are zero. For this situation, we define the ‘canonical enhancement’BI of B, y∼ of y, andd
of d, by


BI ≡





























B11 B1` B1r 0 0 0
B`1 B`` B`r 0 0 0
0 I 0 −I 0 0
0 0 −I 0 I 0
0 0 0 Br` Brr Br2


0 0 0 B2` B2r B22





























, y∼ ≡





























y1


y`


ỹr


ỹ`


yr


y2





























, and d ≡





























d1


d`


0
0
dr


d2





























.


(3.2)
One easily verifies thatBI is also nonsingular and thaty is the unique solution of


BI y∼ = d, (3.3)


with y ≡ (y T
1 , y T


` , y T
r , y T


` , y T
r ,y T


2 )T .
With this linear system we can associate a simple iterative scheme for the two coupled


subblocks:








B11 B1` B1r


B`1 B`` B`r


0 I 0

















y(i+1)
1


y(i+1)
`


ỹr
(i+1)








 =











d1


d`


ỹ`
(i)








 ,








0 I 0
Br` Brr Br2


B2` B2r B22

















ỹ`
(i+1)


y(i+1)
r


y2
(i+1)








 =











ỹr
(i)


dr


d2








 . (3.4)


These systems can be solved in parallel and we can view this as a simple additive Schwarz
iteration (with no overlap and Dirichlet-Dirichlet coupling). The extra unknownsỹ` andỹr,
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in the enhanced vectory∼, will serve for communication between the subdomains during the
iterative solution process of the linear system: after each iteration step subdomain1 and2
exchange the pairs(y`, ỹr) and(ỹ`, yr). After termination of the iterative process, we have
to undo the enhancement. We could simply skip the values of the additional elements, but
since these carry also information one of the alternatives could be the following one.
With an approximate solution


y∼
(i) = (y(i)


1


T


, y(i)
`


T


, ỹ(i)
r


T
, ỹ(i)


`


T


, y(i)
r


T
,y(i)


2


T


)T


of (3.3), we may associate the approximate solutionRy∼ of (3.1) given by


Ry∼ ≡ (y(i)
1


T


, 1
2 (y(i)


` + ỹ(i)
` )T , 1


2 (y(i)
r + ỹ(i)


r )T ,y(i)
2


T


)T ,


that is, we simply average the two sets of unknowns that should have been equal to each
other at full convergence.


3.2.2 Interface coupling matrix


From (3.2) we see that the interface unknowns and the additional interface unknowns are
coupled in a straightforward way by


[


I 0
0 −I


] [


y`


ỹr


]


=
[


I 0
0 −I


] [


ỹ`


yr


]


, (3.5)


but, of course, we may replace the coupling matrix by any other nonsingular interface cou-
pling matrixC:


C ≡
[


C`` C`r


−Cr` −Crr


]


. (3.6)


This leads to the following block system


BCy∼ =





























B11 B1` B1r 0 0 0
B`1 B`` B`r 0 0 0


0 C`` C`r −C`` −C`r 0
0 −Cr` −Crr Cr` Crr 0
0 0 0 Br` Brr Br2


0 0 0 B2` B2r B22
























































y1


y`


ỹr


ỹ`


yr


y2





























= d. (3.7)


In a domain decomposition context, we will have for the approximate solutiony∼ that
ỹr ≈ yr andỹ` ≈ y`. If we know some analytic properties about the local behavior of the
true solutiony across the interface, for instance, smoothness up to some degree, then we
may try to identify a convenient coupling matrixC that takes advantage of this knowledge.
We want preferably aC so that


−C``ỹ` − C`ryr ≈ −C``y` − C`rỹr ≈ 0


and − Cr`y` − Crrỹr ≈ −Cr`ỹ` − Crryr ≈ 0.
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In this case (3.7) is almost decoupled into two independent smaller linear systems (identified
by the two boxes). We may expect fast convergence for the corresponding additive Schwarz
iteration.


3.2.3 Solution of the coupled subproblems


The goal of the enhancement of the matrix of a given linear system, together with a conve-
nient coupling matrixC, is to get two smaller mildly coupled subsystems that can be solved
in parallel.


Additive Schwarz for the linear system (3.7) leads to the following iterative scheme








B11 B1` B1r


B`1 B`` B`r


0 C`` C`r
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y(i+1)
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 =











g(i)
`
d`


d2








 , (3.8)


and
g(i)


r = C`` ỹ(i)
` + C`r y(i)


r , g(i)
` = Cr` y(i)


` + Crrỹ(i)
r . (3.9)


The additive Schwarz method can be represented as a block Jacobi iteration method. To
see this, consider the matrix splittingBC = MC −N, where


MC ≡
[


M1 0
0 M2


]


,


with M1 the matrix at the top in (3.8) andM2 the matrix at the bottom (MC is the boxed
part ofBC in (3.7),−N the part outside the boxes). We assume thatC is such thatMC
is nonsingular. The approximate solutiony∼


(i+1) of (3.7) at stepi + 1 of the block Jacobi
method,


y∼
(i+1) = y∼


(i) + M−1
C r∼


(i) with r∼
(i) ≡ d−BCy∼


(i), (3.10)


corresponds to the approximate solutions at stepi + 1 of the additive Schwarz method. In
view of the fact that one wants to haveg(i)


r andg(i)
` as small as possible in norm, the starting


valuey∼
(0) ≡ 0 is convenient, but it is conceivable to construct other starting values for which


the two vectors are small in norm (for instance, after a restart of some acceleration scheme).
Jacobi is a one step method and the updates from previous steps are discarded. The up-


dates can also be stored in a spaceVm and be used to obtain more accurate approximations.
This leads to a subspace method that, at stepm, searches for the approximate solution in the
spaceVm, which is precisely equal to the Krylov subspaceKm(M−1


C BC ,M−1
C d). For in-


stance, GMRES [41] finds the approximation inVm with the smallest residual, and may be
useful if only a few iterations are to be expected.
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Krylov subspace methods can be interpreted as accelerators of the domain decomposition
method (3.10). The resulting method can also be seen as a preconditioned Krylov subspace
method where, in this case, the preconditioner is based on domain decomposition: the matrix
MC . This preconditioning approach where a system of the formM−1


C BCx∼ = r∼
(0) is solved,


is referred to as left preconditioning. Herer∼
(0) ≡ M−1


C (d−BCy∼
(0)) andy = y∼


(0) + x∼,


SinceM−1
C BC = I−M−1


C N, the search subspaceVm coincides with the Krylov sub-
space
Km(M−1


C N,M−1
C d). The rank of bothN andM−1


C N is equal to the dimension ofC which,
in this case whereC is nonsingular, is2ni. This shows that the dimension ofVm is at most
2ni. Therefore, the exact solutiony of (3.7) belongs toVm for m ≥ 2ni and GMRES finds
y in at most2ni steps. (For further discussion see, for instance, [7,§3.2], [61,§2], and [6].)


3.2.4 Right preconditioning


We can also useMC as a right preconditioner. In this case solutiony of (3.7) is obtained as
y = y∼


(0) + M−1
C x∼ wherex∼ is solved from


BCM−1
C x∼ = r∼


(0) with r∼
(0) ≡ d−BCy∼


(0). (3.11)


Right preconditioning has some advantages for domain decomposition. To see this, first
note that any vector of the formNv∼ ‘vanishes outside the artificial boundary’, that is, only


the ·̃r and ·̃` component of this vector are nonzero. SinceBCM−1
C = I −NM−1


C , multi-
plication by this operator preserves the property of vanishing outside the artificial boundary.
Moreover, ify∼


(0) ≡ M−1
C d, thenr∼


(0) = d − BCy∼
(0) = NM−1


C d vanishes outside the
artificial boundary.


Therefore, if, fory∼
(0) ≡ M−1


C d, equation (3.11) is solved with a Krylov subspace method


with an initial guess that vanishes outside the artificial boundary, for instancex∼
(0) = 0, then


all the intermediate vectors also vanish outside the artificial boundary. Consequently, only
vectors of size2ni have to be stored and the vector updates and dot products are2ni dimen-
sional operations. Note that, in this way, right preconditioning can be interpreted as a Schur
complement method (for our notation see [61], equivalence properties between Schur and
Schwarz methods were already reported in [4, 11]).


For appropriatey∼
(0), the left preconditioned equation can also be formulated in a2ni di-


mensional subspace. However, with respect to the standard basis, it is not so easy to identify
the corresponding subspace. We will use the2ni dimensional subspace, characterized by
right preconditioning as corresponding to the artificial boundary, for the derivation of prop-
erties of the eigensystem of the iteration matrix.


3.2.5 Convergence analysis


As a consequence of (3.10), the errorse(i) ≡ y − y∼
(i) in the block Jacobi method satisfy:


e∼
(i+1) = (I−M−1


C BC)e∼
(i) = M−1


C Ne∼
(i). (3.12)
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Therefore, the convergence rate of the Jacobi iteration depends on the spectral properties of
the ‘error propagation matrix’ M−1


C N. These properties also determine the convergence
behavior of other Krylov subspace methods. With right preconditioning, we have to work
with x∼−x∼


(i), which would lead to the error propagation matrixNM−1
C , but this matrix has


the same eigenvalues as the previous one, so we can analyse either of them with the same
result.
For the Jacobi iteration, the spectral radius ofM−1


C N (or of NM−1
C in the right precondi-


tioned situation) should be strictly less than 1. For other methods, as GMRES, clustering
of the eigenvalues of the error propagation matrix around0 is a desirable property for fast
convergence.


The kernel ofN forms the space of eigenvectors ofM−1
C N that are associated with


eigenvalue0.
Consider an eigenvalueσ 6= 0 of M−1


C N with eigenvectorz∼ ≡ (zT
1 , z T


` , z̃ T
r , z̃ T


` , z T
r , zT


2 )T :


M−1
C Nz∼ = σz∼. (3.13)


SinceN maps all components, except for the·̃` and̃·r ones, to zero, we have that all com-
ponents ofMCz∼, except for thẽ·` and ·̃r components, are zero. The eigenvalue problem
σMCz∼ = Nz∼ can be decomposed into two coupled problems:


σ








B11 B1` B1r


B`1 B`` B`r


0 C`` C`r














z1


z`


z̃r





 =








0
0
gr





 , σ








Cr` Crr 0
Br` Brr Br2


B2` B2r B22














z̃`


zr


z2





 =








g`


0
0





 , (3.14)


with
gr ≡ C`` z̃` + C`r zr, g` ≡ Cr` z` + Crr z̃r. (3.15)


In the context of PDEs, the systems in (3.14) can be interpreted as representing homo-
geneous partial differential equations with inhomogeneous boundary conditions along the
artificial boundary: the left system for domain 1, the right system for domain 2. The values
gr andg` at the artificial boundaries are defined by (3.15): the valuegr for domain 1 is de-
termined by the solution of the PDE at domain 2, while the solution of the PDE at domain 1
determines the value at the internal boundary of domain 2.


We have the following properties, which help to identify the relevant part of the eigen-
system:


(i) N is ann + 2ni by n + 2ni matrix. SinceC is nonsingular, we have that rank(N) =
2ni, and it follows that dim(ker(N)) = n. Hence,σ = 0 is an eigenvalue with geo-
metric multiplicityn.


(ii) Since rank(N) = 2ni, there are at most2ni nonzero eigenvaluesσ, counted according
to algebraic multiplicity.


(iii) If σ is a nonzero eigenvalue then the corresponding componentsgr andg` are non-
zero. To see this, takegr = 0. Then from (3.14) we have that(zT


1 , z T
` , z̃ T


r )T = 0.
Hence,g` = 0, so thatz∼ would be zero.
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(iv) If σ is an eigenvalue with corresponding nonzero componentsgr andg` then−σ is an
eigenvalue with eigenvector with componentsgr and−g` (use (3.14) and (3.15)).


(v) The vector˜z̃` ≡ (z T
` , z̃ T


r )T is linearly independent of˜z̃r ≡ (z̃ T
` , z T


r )T . To prove this,


suppose thatα˜z̃` = β ˜z̃r for someα, β 6= 0. Then, from (3.14) it follows thatBz̃ = 0
where


z̃ ≡ (α zT
1 , α z T


` , α z̃ T
r , β zT


2 )T = (α zT
1 , β z̃ T


` , β z T
r , β zT


2 )T .


As B is nonsingular, we havẽz = 0. Hence,z∼ = 0 andz∼ is not an eigenvector.


Consequently the value ofσ cannot be equal to±1. To prove this, suppose thatσ = 1.
Then by combining the last row of the left part and the first row of the right part of
(3.14) with (3.15), we find thatC(˜z̃` − ˜z̃r) = 0. SinceC is nonsingular, this im-
plies that˜z̃` = ˜z̃r, i.e. the vectors are linearly dependent. The value−1 for σ is then
excluded on account of property (iv).


The magnitude ofσ dictates the error reduction. From (3.14) and (3.15) it follows that


σ(C``z` + C`r z̃r) = gr = C``z̃` + C`rzr


σ(Cr`z̃` + Crrzr) = g` = Cr`z` + Crr z̃r,
(3.16)


which leads to


|σ|2 =
(C``z̃` + C`rzr)∗(Cr`z` + Crr z̃r)
(C``z` + C`r z̃r)∗(Cr`z̃` + Crrzr)


. (3.17)


From (3.16) we conclude that multiplying bothC`` andC`r by a nonsingular matrix does not
affect the value ofσ. Likewise, bothCr` andCrr may be multiplied by (another) singular
matrix with no effect onσ. This can be exploited to bring theC matrices to some convenient
form.


The one-dimensional case. We first study the one-dimensional case, because this will not
only give some insight in how to reduceσ, but it will also be useful to control local situa-
tions in the two-dimensional case.
In this situation the problem simplifies: the matricesC``, C`r, Cr`, andCrr are scalars,
and so are the vector partsz`, zr, z̃`, andz̃r. Because of the freedom to scale the matrices
(scalars), we may takeC as


C =
[


C`` C`r


−Cr` −Crr


]


=
[


1 α`


−αr −1


]


. (3.18)


With µ` ≡ z̃r/z`, µr ≡ z̃`/zr, we have from (3.17) that


|σ|2 =
∣


∣


∣


∣


µr + α`


1 + α`µ`
· αr + µ`


αrµr + 1


∣


∣


∣


∣


. (3.19)


Theµ-values will be interpreted as local growth factors at the artificial boundary:µ` shows
howz∼ changes at the artificial boundary of the left domain;µr shows the same for the right
domain.
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Note that˜z̃` depends linearly on˜z̃r if µrµ` = 1. Since this situation is excluded on account
of property (v), we have thatµrµ` 6= 1. The best choice for the minimization ofσ in (3.19)
is obviouslyα` = −µr andαr = −µ`, leading toσ = 0, which gives optimal damping.


The optimal choice forα` andαr results in a coupling that annihilates the ‘outflow’gr


andg` of the two domains. This leads effectively to two uncoupled subdomains: an ideal
situation.


More dimensions. In the realistic case of a more dimensional overlap (ni > 1), there is
no choice forα` andαr (i.e.,C`` = I, C`r = α`I, etc.) that leads to an error reduction ma-
trix with only trivial eigenvalues. But, the conclusion that the outflow should be minimized
in some average sense for the best error reduction is here also correct. In our application in
§3.4, we will identify coupling matricesC that lead to satisfactory clustering of most of the
eigenvaluesσ, of the error propagation matrix, around0. We will do so by selecting theαr
andα` as suitable averages of the local growth factorsµr andµ`.


3.3 The eigenvalue problem


3.3.1 The Jacobi-Davidson method


For the computation of a solution to an eigenvalue problem the Jacobi-Davidson method
[46], is an iterative method that in each iteration:


1. computes an approximation for an eigenpair from a given subspace, using a Rayleigh-
Ritz principle,


2. computes a correction for the eigenvector from a so-called correction equation,


3. expands the subspace with the computed correction.


The correction equation mentioned in step 2 is characteristic for the Jacobi-Davidson method,
for example, the Arnoldi method [2, 40] simply expands the subspace with the residual for
the approximated eigenpair, and the Davidson method [15] expands the subspace with a pre-
conditioned residual. The success of the Jacobi-Davidson method depends on how fast good
approximations for the correction equation can be obtained and it is for that purpose that we
will try to exploit the enhancement techniques discussed in the previous section.


Therefore, we will consider this correction equation in some more detail. We will do this
for the standard eigenvalue problem


Ax = λx. (3.20)


Given an approximate eigenpair(θ,u ) (with residualr ≡ θu −Au) that is close to some
wanted eigenpair(λ,x ), a correctiont for the normalizedu is computed from the correction
equation:


t ⊥ u, (I− uu∗) (A− θ I ) (I− uu∗) t = r, (3.21)
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or in augmented formulation ([44,§3.4])
[


A− θ I u
u∗ 0


] [


t
ε


]


=
[


r
0


]


. (3.22)


In many situations it is quite expensive to solve this correction equation accurately and
fortunately it is also not always necessary to do so. A common technique is to compute an
approximation fort by a few steps of a preconditioned iterative method, such as GMRES or
Bi-CGSTAB.


When a preconditionerM for A− θ I is available, then(I− uu∗)M(I− uu∗) can be
used as left preconditioner for (3.21). This leads to the linear system (see, [46,§4])


PM−1 (A− θ I)Pt = PM−1 r where P ≡ I− M−1 uu∗


u∗M−1 u
. (3.23)


The operator at the left hand side in (3.23) involves two (skew) projectorsP. However, when
we start the iterative solution process for (3.23) with initial guess0, thenPt may be replaced
with t at each iteration of a Krylov iteration method: projection at the right can be skipped
in each step of the Krylov subspace solver.


Right preconditioning, which has advantages in the domain decomposition approach,
can be carried out in a similar way, with similar reductions in the application ofP, as we
will see in §3.3.3 below. However, because the formulas with right preconditioning look
slightly more complicated, we will present our arguments mainly for left preconditioning.


3.3.2 Enhancement of the correction equation


We use the domain decomposition approach as presented in§3.2 to solve the correction equa-
tion (3.21). Again, we will assume that we have two subdomains and we will use the same
notations for the enhanced vectors. WithB ≡ A − θ I this leads to the enhanced Jacobi-
Davidson correction equation


t ⊥ u, (I− uu∗)BC (I− uu∗) t = r (3.24)


with u ≡ (uT
1 , uT


` , 0T , 0T , uT
r ,uT


2 )T , and likewiser ≡ (rT
1 , r T


` , 0T , 0T , r T
r , rT


2 )T . The
dimension of the zero parts, indicated by0, is assumed to be the same as the dimension of
u` (andur).
To see why this is correct, apply the enhancements of§3.2 to the augmented formulation
(3.22) of the correction equation, and use the fact that the augmented and the projected form
are equivalent. We assumeu to be normalized. Thenu is normalized as well.


With
(I− uu∗)MC(I− uu∗) (3.25)


as the left preconditioner, we obtain


PM−1
C BC Pt = PM−1


C r with P ≡ I− M−1
C uu∗


u∗M−1
C u


. (3.26)
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In comparison with the error propagation (3.12) of the block Jacobi method for ordinary
linear systems, the error propagation matrixM−1


C N is now embedded by the projections
P. These projections prevent the operator in the correction equation from getting (nearly)
singular: asθ approximates the wanted eigenvalueλ, in the asymptotic caseθ is even equal
to λ, B gets close to singular in the direction of the wanted eigenvectorx. For ordinary
linear systems this possibility is excluded by imposingB to be nonsingular (see remark (v)
in §3.2.5). Here we have to allow a singularB. In our analysis of the propagation matrix of
the correction equation, for the model problem in§3.4.3, in first instance we will ignore the
projections. Afterwards, we will justify this (both analytically (§3.4.3) as well as numerically
(§3.5.2)).


Note.We have enhanced the correction equation. Another option is to start with an en-
hancement of the eigenvalue problem itself. However, this does not result in essential dif-
ferences (see chapter 5). If the correction equations for these two different approaches are
solved exactly, then the approaches are even equivalent.


3.3.3 Right preconditioning


In §3.2.4 we have showed that, without projections, right preconditioning for domain de-
composition leads to an equation that is defined by its behavior on the artificial boundary
only. Although the projections slightly complicate matters, the computations for the pro-
jected equation can also be restricted to vectors corresponding to the artificial boundary, as
we will see below. Moreover, similar to the situation for left preconditioning, right precon-
ditioning requires only one projection per iteration of a Krylov subspace method. In this
section, we will use the underscore notation for vectors in order to emphasize that they are
defined in the enhanced space.


First we analyze the action of the right preconditioned matrix.
The inverse onu⊥ of the projected preconditioner in (3.25) is equal to (cf. [44,§7.1.1] and
[26])


PM−1
C =


(


I− M−1
C uu∗


u∗M−1
C u


)


M−1
C = M−1


C


(


I− uu∗M−1
C


u∗M−1
C u


)


, (3.27)


with P as in (3.26). This expression represents the Moore–Penrose inverse of the operator
in (3.25), on the entire space. Note thatu∗P = 0 (by definition ofP) andu∗N = 0 (by
definition ofu andN). Therefore, for the operator that is involved in right preconditioning
(cf. (3.11)), we have that


(I− uu∗)BC(I− uu∗)PM−1
C


= (I− uu∗)BCPM−1
C


= (I− uu∗)BCM−1
C


(


I− uu∗M−1
C


u∗M−1
C u


)


,


= I− uu∗ − (I− uu∗)NPM−1
C


= I− uu∗ −NPM−1
C .


(3.28)
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Hence, this operator maps a vectorv∼ that is orthogonal tou to the vector


(I− uu∗)BC(I− uu∗)PM−1
C v∼ = v∼−NPM−1


C v∼


that is also orthogonal tou.
Therefore, right preconditioning for (3.24) can be carried out in the following steps (cf.


§3.2.4):


1. Compute t∼
(0) ≡ PM−1


C r and r∼
(0) ≡ Nt∼


(0).


2. Compute an (approximate) solutions∼
(m) of


(I−NPM−1
C )s∼ = r∼


(0),


with (m steps of) a Krylov subspace method with initial guess0.


3. Updatet∼
(0) to the (approximate) solutiont of (3.24):


t = t∼
(0) + PM−1


C s∼
(m).


As in §3.2.4, the intermediate vectors in the solution process for the equation in step 2 van-
ish outside the artificial boundary. Therefore, for the solution of the right preconditioned
enhanced correction equation, only2ni-dimensional vectors have to be stored, and the vec-
tor updates and dot products are also for vectors of length2ni.


3.4 Tuning of the coupling matrix for a model problem


Now we will address the problem whether it is possible to reduce the computing time for the
Jacobi-Davidson process, by an appropriate choice of the coupling matrixC. We have, in
§3.2, introduced the decomposition of a linear system, into two coupled subsystems, in an
algebraic way. In this section we will demonstrate how knowledge of the physical equations
from which the linear system originates can be used for tuning of the coupling parameters.


3.4.1 The model problem


As a model problem we will consider the two-dimensional advection-diffusion operator:


L(ϕ̂) ≡ a
∂2


∂x2 ϕ̂ + b
∂2


∂y2 ϕ̂ + u
∂
∂x


ϕ̂ + v
∂
∂y


ϕ̂ + cϕ̂, (3.29)


that is defined on the open domainΩ = (0, ωx)×(0, ωy) inR2, with constantsa > 0, b ≥ 0,
c, u andv. We will further assume Dirichlet boundary conditions:ϕ̂ = 0 on ∂Ω of Ω. We
are interested in some eigenvaluêλ ∈ C and corresponding eigenfunction̂ϕ of L:


{


L(ϕ̂) = ̂λ ϕ̂ on Ω,
ϕ̂ = 0 on ∂Ω.


(3.30)
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We will use the insights, obtained with this simple model problem, for the construction
of couplings for more complicated partial differential operators.


Discretization.We discretizeL with central differences with stepsizeh = (hx, hy) =
( ωx


nx+1 , ωy


ny+1 ) for the second order part and stepsize2h = (2hx, 2hy) for the first order part,
wherenx andny are positive integers:


̂L(ϕ̂) ≡ a
δ2
x


h2
x


ϕ̂ + b
δ2
y


h2
y


ϕ̂ + u
δx


2hx
ϕ̂ + v


δy


2hy
ϕ̂ + cϕ̂. (3.31)


The operator
δx


hx
denotes the central difference operator, defined as


δx


hx


̂ψ(x, y) ≡
̂ψ(x + 1


2hx, y)− ̂ψ(x− 1
2hx, y)


hx
,


and
δy


hy
is defined similar. This leads to the discretized eigenvalue problem


{


L(ϕ) = λϕ on Ωh,
ϕ = 0 on ∂Ωh,


(3.32)


whereΩh and∂Ωh is the uniform rectangular grid of points(jxhx, jyhy) in Ω and in∂Ω,
respectively. We have skipped the hat·̂ in order to indicate that the functions are restricted
to the appropriate grid, and that the operatorL is restricted to grid functions. The vectorϕ
is defined onΩh ∪ ∂Ωh.


We use the boundary conditionsϕ = 0 at ∂Ωh for the elimination of these values ofϕ
from L(ϕ) = λϕ.


Identification of grid functions with vectors and of operators on grid functions with ma-
trices leads to an eigenvalue problem as in (3.20) of dimensionn ≡ nx ·ny: the eigenvector
x corresponds to the eigenfunctionϕ restricted toΩh. The matrixA corresponds to the op-
eratorL from which the boundary conditions have been eliminated. In our application, we
obtain the corresponding vectors by enumeration of the grid points from bottom to top first
(i.e., they-coordinates first) and then from left to right ([58,§6.3]). In our further analy-
sis, we will switch from one representation to another (grid function or vector), selecting the
representation that is the most convenient at that moment.


3.4.2 Decomposition of the physical domain


For some0 < ωx1 < ωx we decompose the domainΩ in two subdomainsΩ1 ≡ (0, ωx1]×
(0, ωy) andΩ2 ≡ (ωx1, ωx)× (0, ωy).


Letnx1 be the number of grid points in thex direction inΩ1. ThenΩ1∩Ωh andΩ2∩Ωh


is annx1 × ny andnx2 × ny grid respectively withnx1 + nx2 = nx. To number the grid
points in thex direction, we use local indicesjx1, 1 ≤ jx1 ≤ nx1, andjx2, 1 ≤ jx2 ≤ nx2,
in Ω1 andΩ2 respectively.
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FIGURE 3.1. Decomposition of the domainΩ into two subdomainsΩ1 andΩ2.
The bullets(•) represent the grid points of the original grid. The circles(o) represent the extra grid points at the
internal boundary. The indicesjx andjy refer to numbering in thex direction andy direction respectively of the
grid points in the grids: the pair(jx, jy) corresponds to point(jxhx, jyhy) in Ω. For the numbering of the grid
points in thex direction in the two subdomains a local index is used:jx1 = jx in Ω1 (0 ≤ jx1 ≤ nx1 + 1) and
jx2 = jx − nx1 in Ω2 (0 ≤ jx2 ≤ nx2 + 2).
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Because of the 5 point star discretization, the unknowns at the last row of grid points
(jx1 = nx1) in they direction inΩ1 are coupled with those at the first row of grid points
(jx2 = 1) in they direction inΩ2, and vice versa. The unknowns forjx1 = nx1 are denoted
by the vectory`, and the unknowns forjx2 = 1 are denoted byyr, just as in§3.2. Now we
enhance the system with the unknownsỹr andỹ`, which, in grid terminology, correspond to
a virtual new row of gridpoints to the right ofΩ1, and the left ofΩ2, respectively. These new
virtual gridpoints serve as boundary points for the domainsΩ1 andΩ2. See Fig. 3.1 for an
illustration.


The vectorsy`, yr, ỹ`, andỹr areny dimensional (theni in §3.2.1 is now equal tony).
The2ny by 2ny matrix C, that couplesy`, ỹr, ỹ`, andyr can be interpreted as discretized
boundary conditions of the differential operator at the internal newly created boundary be-
tweenΩ1 andΩ2 [55, 56].
Note that the internal boundary conditions are explicitly expressed in the total system matrix
BC , throughC, whereas the external boundary conditions have been used to eliminate the
values at the external boundary (see§3.4.1).
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3.4.3 Eigenvectors of the error propagation matrix


We will now analyze the eigensystem of the error reduction matrixM−1
C N (see§3.2.5) and


discuss appropriate coupling conditions (that is, the internal boundary conditions) as repre-
sented by the matrixC. Here, the matricesMC andN are defined forB ≡ A − θI, as
explained in§§3.2.2-3.2.3, for some approximate eigenvalueθ (cf., §§3.3.1-3.3.2). The ma-
trix A corresponds toL, as explained in§3.4.1.


First, we will discuss in section§3.4.3.1 the case of one spatial dimension (i.e., noy vari-
able). The results for the one-dimensional case are easy to interpret. Moreover, since the
two-dimensional eigenvalue problem in (3.30) is a tensor product of two one-dimensional
problems, the results for the one-dimensional case can conveniently be used for the analysis
in §3.4.3.2 of the two-dimensional problem.


3.4.3.1 The one-dimensional case


In this section, we will discuss the case of one spatial dimension: there is noy variable. To
simplify notations, we will skip the indexx for this case.


Suppose that we have an approximate eigenvalueθ for some eigenvalueθ of B.
To simplify formulas, we shift the approximate eigenvalue byc. The matrixB in §3.2.5
corresponds to the three point stencil of the finite difference operator


a
δ2


h2 + u
δ
2h


− θ.


For the eigensystem ofM−1
C N, we have to solve the systems in (3.14) for anx̃r 6= 0 and


x̃` 6= 0, that is, we have to compute solutionsψ1 andψ2 for the discretized PDE on domain
1 and domain 2, respectively (cf.§3.2.5). The functionsψ1 andψ2 should satisfy


[


a
δ2


h2 + u
δ
2h


− θ
]


ψp(jph) = 0 for 1 ≤ jp ≤ np and p = 1, 2. (3.33)


The conditions on the external boundaries imply that


ψ1(0) = 0 and ψ2(n2h + h) = 0.


For the solutions of (3.33), we try functions of the formψ(jh) = ζj . Thenζ satisfies


(


1 + uh
2a


)


ζ − 2D +
(


1− uh
2a


)


ζ−1 = 0 with D ≡ 1 +
h2


2a
θ. (3.34)


Let ζ+ andζ− denote the roots of this equation, such that|ζ+| ≥ |ζ−|. In the regular case
whereζ+ 6= ζ−, the solutionsψ1 andψ2 are, apart from scaling, given by


ψ1(j1h) = ζj1
+ − ζj1


− and ψ2(j2h) = ζj2−n2−1
− − ζj2−n2−1


+ .


We distinguish three different situations:
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(i) Harmonic behavior:ζ− = ζ̄+ 6∈ R.
If ζ0 ∈ R andτ ∈ [0, 2π) are such thatζ+ = ζ0 exp(iτ). Then, up from scaling
factors,


ψ1(j1h) = ζj1
0 sin(τj1) and ψ2(j2h) = ζj2


0 sin(τ(j2 − n2 − 1)).


(ii) Degenerated harmonic behavior:ζ+ = ζ−.
In this case we have, apart from scaling factors,


ψ1(j1h) = j1ζ
j1
0 and ψ2(j2h) = (n2 + 1− j2)ζ


j2
0 .


(iii) Dominating behavior:|ζ+| > |ζ−|.
Near the artificial boundary, that is forj1 ≈ n1 andj2 ≈ 1, we have apart from scaling
factors that


ψ1(j1h) = ζj1
+


(


1−
(


ζ−
ζ+


)j1
)


≈ ζj1
+


and


ψ2(j2h) = ζj2−n2−1
−


(


1−
(


ζ−
ζ+


)n2+1−j2
)


≈ cζj2
− ,


so that, apart from a scaling factor again,ψ2(j2h) ≈ ζj2
− .


How accurate the approximation is depends on the ratio|ζ−|/|ζ+| and on the size of
n1 andn2.


The coupling matrixC is2 by2 (ni = 1). We consider aC as in (3.18). Then, according
to (3.19), the absolute value of the eigenvalueσ is given by


|σ|2 =
∣


∣


∣


∣


α` + µr


1 + αrµr


∣


∣


∣


∣


∣


∣


∣


∣


αr + µ`


1 + α`µ`


∣


∣


∣


∣


, (3.35)


whereµ` = ψ1(n1h + h)/ψ1(n1h) andµr = ψ2(0)/ψ2(h): z` in (3.14) corresponds to
ψ1(n1h), z̃r to ψ1(n1h + h), etcetera.


In the case of dominating behavior (cf. (iii)), we have thatµ` ≈ ζ+ andµr ≈ 1/ζ−.
As observed in (iii), the accuracy of the approximation depends on the ratio|ζ−|/|ζ+| and
on the values ofn1 andn2. But already for modest (and realistic) values of these quanti-
ties, we obtain useful estimates, and we may expect a good error reduction for the choice
α` = −1/ζ− andαr = −ζ+. The parametersζ+ andζ− would also appear in a local mode
analysis: they do not depend on the external boundary condition nor on the position of the
artificial boundary.


The value for|σ| in (3.35) is equal to one whenµr = 1/µ̄`, regardlessα` andαr (as-
suming these are real). If we would follow the local mode approach for the situations (i) and
(ii), that is, if we would estimateµ` by ζ+ andµr by 1/ζ−, then we would encounter such
values forµ` andµr. In specific situations, we may do better by using the expressions for
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ψ1 andψ2 in (i) and (ii), that is, we may find coupling parametersα` andαr that lead to an
eigenvalueσ with |σ| < 1. However, then we need information on the external boundary
conditions and the position of the artificial boundary. Certainly in the case of a higher spatial
dimension, this is undesirable. Moreover, ifθ is an exact eigenvalue ofA then we are in the
situation in (i): the functionsψ1 andψ2 are multiples of the components on domain 1 and
domain 2, respectively, of the eigenfunction andσ = 1 (see (v) in§3.2.5 and the remark in
§3.3.2). In this case there is no value ofα` andαr for which |σ| < 1.


We defineν ≡ (2a+uh)/(2a−uh). In order to simplify the forthcoming discussion for
two spatial dimensions, observe that, in the case of dominating growth (iii), that is,µ` ≈ ζ+
andµr ≈ 1/ζ−, (3.35) implies that


|σ|2 ≈


∣


∣


∣


∣


∣


α̃` + ˜ζ


1 + α̃` ˜ζ


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


α̃r + ˜ζ


1 + α̃r ˜ζ


∣


∣


∣


∣


∣


, where α̃` ≡
α`√
ν


, α̃r ≡
√


ναr, ˜ζ ≡
√


νζ+. (3.36)


Here we have used thatζ+ · ζ− = 1/ν, which follows from (3.34).


If, for the Laplace operator (whereu = 0 andc = 0), we use Ritz values for the approx-
imate eigenvaluesθ, thenθ takes values betweenλ(n) andλ(0). Hence,θ ∈ (−4a/h2, 0),
and the rootsζ+ andζ− are always complex conjugates. We will see in the next subsections
that, for two spatial dimensions, the Ritz values that are of interest lead to a dominant root,
also for the Laplace operator, and we will see that local mode analysis is then a convenient
tool for the identification of effective coupling parameters.


3.4.3.2 Two dimensions


Similar to the one-dimensional case we are interested in functionsχ1 andχ2 such that,


L(χp) = 0 on Ωh ∩ Ωp, p = 1, 2, (3.37)


and that satisfy the external boundary conditions. But nowχ1 andχ2 are functions that de-
pend on both thex- andy direction whereas the operatorL (hereL is introduced in§3.4.1)
acts in these two directions. Since the finite difference operatorδx


hx
acts only in thex direction


and δy


hy
acts only in they direction, their actions are independent of each other. Therefore, in


this case of constant coefficients1, we can write the operatorL in equation (3.37) as a sum
of tensor product of one-dimensional operators:


L = Lx ⊗ I + I⊗ Ly, (3.38)


where


Lx ≡ a
δ2
x


h2
x


+ u
δx


2hx
and Ly ≡ b


δ2
y


h2
y


+ v
δy


2hy
+ c− θ. (3.39)


Lx andLy incorporate the action ofL in thex direction andy direction respectively.


1It is sufficient ifa andu are constants as functions ofy, b andv are constants as function ofx, andc is a product
of a function inx and a function iny.
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Since the domainΩ is rectangular and since on each of the four boundary sides ofΩ we
have the same boundary conditions, the tensor product decomposition ofL corresponds to
a tensor product decomposition of the matrixA.


We try to construct solutions of (3.37) by tensor product functions, that is by functions
χp of the form


χp(jxphx, jyhy) = ψp(jxphx)⊗ ϕ(jyhy) = ψp(jxphx) · ϕ(jyhy).


Forϕ we select eigenfunctionsϕ(l) of the operatorLy that satisfy the boundary conditions
for they direction. Then


L(χp) = (Lxψp)⊗ ϕ(l) + ψp ⊗ λ(l)ϕ(l) = (Lx + λ(l))(ψp)⊗ ϕ(l),


whereλ(l) is the eigenvalue ofLy that corresponds toϕ(l). Apparently, for each eigenso-
lution of the ‘y-operator’Ly, the problem of finding solutions of (3.37) reduces to a one-
dimensional problem as discussed in the previous subsection: findψp such that


(Lx + λ(l))(ψp) =
[


a
δ2
x


h2
x


+ u
δx


2hx
+ λ(l)


]


ψp = 0, (3.40)


and that satisfy the external boundary conditions in thex direction. To express the depen-
dency of the solutionsψp on the selected eigenfunction ofLy, we denote the solution asψ(l)


p .
Now, consider matrixpairs(C`r, C``) and(Cr`, Crr) for which the eigenfunctionsϕ(l)


of Ly are also eigenfunctions:


C`rϕ(l) = α(l)
` C``ϕ(l) and Cr`ϕ(l) = α(l)


r Crrϕ(l). (3.41)


Examples of such matrices are scalar multiples of the identity matrix (for instance,C`r =
α(l)


` I andC`` = I), but there are others as well, as we will see in§3.4.4. For such aC
there is a 1–1 correspondence for each functionϕ(l) on the two subdomains: a component
in the direction ofψ(l)


1 ⊗ ϕ(l) on subdomain1 is transferred byM−1
C N to a component in


the direction ofψ(l)
2 ⊗ ϕ(l) on subdomain2 and vice versa. More precisely, ifC is such


that (3.41) holds and ifψ(l) ≡ (clψ
(l)
1 , ψ(l)


2 )T for some scalarcl then, by construction of
ψ(l), MC mapsψ(l)⊗ϕ(l) onto a vector that is zero except for the·̃` and̃·r components (cf.
(3.14)) which are equal to


cl


(


ψ(l)
1 (n1xhx) + α(l)


` ψ(l)
1 (n1xhx + hx)


)


C``ϕ(l) (3.42)


and (


α(l)
r ψ(l)


2 (0) + ψ(l)
2 (hx)


)


Crrϕ(l), (3.43)


respectively. In its turn,N mapsψ(l) ⊗ ϕ(l) onto a vector that is zero except for the·̃` and
·̃r components (cf. (3.14) and (3.15)) which are equal to


(


ψ(l)
2 (0) + α(l)


` ψ(l)
2 (hx)


)


C``ϕ(l) (3.44)
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and
cl


(


α(l)
r ψ(l)


1 (n1xhx) + ψ(l)
1 (n1xhx + hx)


)


Crrϕ(l), (3.45)


respectively. By a combination of (3.42) and (3.44), and (3.43) and (3.45), respectively, one
can check that, for an appropriate scalarcl, ψ(l) ⊗ ϕ(l) is an eigenvector ofM−1


C N with
corresponding eigenvalueσ(l) such that


|σ(l)|2 =


∣


∣


∣


∣


∣


α(l)
` + µ(l)


r


1 + α(l)
r µ(l)


r


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


α(l)
r + µ(l)


`


1 + α(l)
` µ(l)


`


∣


∣


∣


∣


∣


, (3.46)


where (here we assumed thatψ(l)
1 (n1xhx) 6= 0 andψ(l)


2 (hx) 6= 0)


µ(l)
` ≡ ψ(l)


1 (n1xhx + hx)/ψ(l)
1 (n1xhx) and µ(l)


r ≡ ψ(l)
2 (0)/ψ(l)


2 (hx).


Note that the expression forσ(l) does not involve the value ofcl. From property (iv) in §3.2.5
we know thatψ(l)


− ⊗ ϕ(l) whereψ(l)
− ≡ (clψ


(l)
1 ,−ψ(l)


2 )T is also an eigenvector with eigen-
value−σ(l).
As span{ψ(l), ψ(l)


− } = span{(ψ(l)
1 , 0)T , (0, ψ(l)


2 )T} the functionsψ(l)⊗ϕ(l) andψ(l)
− ⊗ϕ(l)


are linearly independent and


span{ψ(1) ⊗ ϕ(1), ψ(1)
− ⊗ ϕ(1), . . . , ψ(ny) ⊗ ϕ(ny), ψ(ny)


− ⊗ ϕ(ny)} =


span{


(


ψ(1)
1 ⊗ ϕ(1)


0


)


,


(


0
ψ(1)


2 ⊗ ϕ(1)


)


, . . .


. . . ,


(


ψ(ny)
1 ⊗ ϕ(ny)


0


)


,


(


0
ψ(ny)


2 ⊗ ϕ(ny)


)


}.


From this it follows that the total number of linear independently eigenfunctions of the form
ψ(l) ⊗ ϕ(l) is equal to2 ny. Note that our approach with tensorproduct functions leads to
the required result: once we know theny functionsϕ(1), . . . , ϕ(ny), we can, up to scalars,
construct all eigenvectors ofM−1


C N that correspond to the case (ii) in §3.2.5, i.e. the eigen-
vectors with, in general, nonzero eigenvalues.2


Apparently, the problem of finding the two timesny nontrivial eigensolutions ofM−1
C N


breaks up intony ‘one’-dimensional problems. For eachl, the matrixM−1
C N has two eigen-


valuesσ(l) and−σ(l) of which the eigenvectors have components that, on domainp, corre-
spond to a scalar multiple ofψ(l)


p ⊗ ϕ(l) (p = 1, 2).
Errors will be transferred in the iterative solution process of (3.7) from one subdomain


to the other. These errors can be decomposed in eigenvectors ofM−1
C N, that is, they can


be expressed on subdomainp (p = 1, 2) as linear combination of the functionsψ(l)
p ⊗ ϕ(l).


The component of the error on domainp in the direction ofψ(l)
p ⊗ϕ(l) is transferred in each


2For α(l)
` → −µ(l)


r or α(l)
r → −µ(l)


` one of the nonzero eigenvalues degenerates to a defective zero eigen-
value. But then still this construction yields all nonzero eigenvalues. To avoid a technical discussion we give no
details here.
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step of the iteration process precisely to the component in the direction ofψ(l)
3−p ⊗ ϕ(l) on


domain3− p. In case of the block Jacobi method, transference damps this component by a
factor|σ(l)|.


From§3.4.3.1 we know thatψ(`)
p , the component in thex direction of an eigenvector of


M−1
C N, behaves (degenerated) harmonic or dominated. In Fig. 3.2 these typical situations


are illustrated.


Here, as in the case of one spatial dimension (§3.4.3.1), the size of the eigenvaluesσ(l)


is determined by the growth factorµ(l)
` of ψ(l)


1 andµ(l)
r of ψ(l)


2 in (3.46).


In case of dominated behavior, these factors can adequately be estimated by the dominating
root of the appropriate characteristic equation (cf. (3.34)). The scalars, that is, the matrices
C`r andCr` can be tuned to minimize the|σ(l)|. This will be the subject of our next section.


As we explained in§3.4.3.1, we see no practical way to tune our coefficients in case of har-
monic behavior. However, in our applications the number of eigenvalues that can not be
controlled is limited as we will see in our next subsection. Except for a few eigenvalues,
the eigenvalues of the error reduction matrixM−1


C N will be small in absolute value: the
eigenvalues cluster around0. If θ is equal to an eigenvalueλ of A, then1 is an eigenvalue
of M−1


C N (see (v) in§3.2.5 and§3.3.2) andM−1
C BC is singular. However, the projections


that have been discussed in§3.3.2, will remove this singularity. An accurate approximation
θ of λ (a desirable situation) corresponds to a near singular matrixM−1


C BC , and here, the
projection will also improve the conditioning of the matrix.


3.4.4 Optimizing the coupling


In this section, we will discuss the construction of a coupling matrixC that leads to a clus-
tering of eigenvaluesσ(l) of M−1


C N around 0. We give details for the Laplace operator. We


will concentrate on the error modesψ(l)
p ⊗ϕ(l) on domainp with dominated growth in thex


direction, that is, modes for whichψ(l)
p exhibits the dominated behavior as described in (iii)


of §3.4.3.1. For these modes and forC as in (3.18) and (3.41), we have that (cf., (3.36) and
(3.46))


|σ(l)|2 ≈


∣


∣


∣


∣


∣


α̃(l)
` + ˜ζ(l)


1 + α̃(l)
`


˜ζ(l)


∣


∣


∣


∣


∣


∣


∣


∣


∣


∣


α̃(l)
r + ˜ζ(l)


1 + α̃(l)
r ˜ζ(l)


∣


∣


∣


∣


∣


. (3.47)


Here, forν ≡ (2a + uhx)/(2a − uhx), the quantities̃α(l)
` , α̃(l)


r and˜ζ(l) are defined as in


(3.36): α̃(l)
` ≡ α(l)


` /
√


ν, α̃(l)
r ≡


√
ν α(l)


r , ˜ζ(l) ≡
√


ν ζ(l)
+ , where hereζ(l)


+ is the dominant
root of (3.34) forλ′ = λ(l). Note that, in view of the symmetry in the expression for|σ(l)|2,
it suffices to study aC for which α̃(l)


` = α̃(l)
r .


Let E be the set ofl’s in {1, . . . , ny} for which theψ(l)
p exhibit dominated growth, or,


equivalently, for which the characteristic equation associated with the operatorLx + λ(l) in
(3.40) (cf., (3.34)) has a dominant rootζ(l)


+ : E ≡ {l = 1, . . . , ny | |ζ(l)
+ | > |ζ(l)


− |}. We are
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FIGURE 3.2. Eigenvector of the error propagation matrixM−1
C N for the two-dimensional two subdomain


case. In thex direction, the direction perpendicular to the interface between the subdomains, it typically behaves
harmonic (top picture) or dominated (bottom picture). For explanation see§3.4.3.2.


y x


y x
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interested inα(l) ≡ α̃(l)
` = α̃(l)


r for which


σopt ≡ max
{∣


∣


∣


∣


α(l) + ζ
1 + α(l)ζ


∣


∣


∣


∣


ζ ∈ ̂E
}


with ̂E ≡ {
√


ν ζ(l)
+ | l ∈ E} (3.48)


is ‘as small as possible’.


3.4.4.1 Simple coupling


For the choiceC`r =
√


ν αI andCr` = (α/
√


ν)I, we can easily analyze the situation.
Thenα(l) = α for all l and we should find theα = αopt that minimizesmax |(α + ζ)/(1 +
αζ)|. We assume that|uhx| < 2a. Note that then


√
ν times the dominant characteristic roots


are real and> 1. Therefore, the two extremal values


µ ≡ min ̂E and M ≡ max ̂E (3.49)


determine the size of the maximum. This leads to


− αopt = 1 +


√


(µ2 − 1)(M2 − 1)
µ + M


+
(µ− 1)(M − 1)


µ + M
> 1 (3.50)


and


σopt =


√
M2 − 1−


√


µ2 − 1


M
√


µ2 − 1 + µ
√


M2 − 1
> 0. (3.51)


Laplace operator.To get a feeling for what we can expect, we interpret and discuss the
results for the Laplace operator, that is, we now takeu = v = c = 0. Further, we concentrate
on the computation of (one of) the largest eigenvalue ofL and we assume thatθ is close to
the target eigenvalue. Then


λ(l) = − 2b
h2


y
(1− cos(π


l
ny + 1


))− θ. (3.52)


First we derive a lower bound forµ and an upper bound forM .


ForD(l) ≡ 1− h2
x


2a λ(l) (cf., (3.34)), we have that|D(l)| > 1, or, equivalently,|ζ(l)
+ | > |ζ(l)


− |,
if and only if λ(l) < 0. Hencele ≡ min E is the smallest integerl for whichλ(l) < 0 and


le ≡ b˜lec+ 1 where ˜le ≡
2
π


(ny + 1) arcsin


(


hy


2


√


−θ
b


)


.


(The noninteger valuel = ˜le is the ‘solution’ ofλ(l) = 0.) Forhy � 1, ˜le ≈
ωy


π


√


−θ
b


.


For an impression on the error reduction that can be achieved with a suitable coupling,
we are interested in lower bounds forµ−1 that are as large as possible. Withδ ≡ D(le)−1
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we have thatµ− 1 = δ +
√


2δ + δ2 ≥
√


2δ. Therefore, we are interested in positive lower
bounds forδ:


δ = ρ2(cos(π
˜le


ny + 1
)− cos(π


le
ny + 1


)) ≥ πρ2 le − ˜le
ny + 1


sin(π
˜le


ny + 1
)


≥ 2π
b
a
˜le(le − ˜le)


(


hx


ωy


)2


where ρ ≡ hx


hy


√


b
a
.


The bound forδ depends on the distance of˜le to the integers, which can be arbitrarily small.
This means that, even for the optimal coupling parameters, the (absolute value of the) eigen-
valueσ(le) can be arbitrarily close to one. Since, for optimal coupling, the damping that we
achieve for the smallestl in E is the same as for the largest, it seems to be undesirable to
concentrate on damping the error modes associated withle as much as possible. Therefore,
we removele from the setE and concentrate on damping the error modes associated withl
in E′ ≡ E\{le}. For theδ andµ associated with this slightly reduced setE′ we have that


µ− 1 ≥
√


2δ ≥ 2κhx where κ ≡ 1
ωy


√


πle
b
a
. (3.53)


The lower bound forµ− 1 is sharp forh → 0 with ρ fixed, i.e., for givenρ, h = (hx, hy) is
such thathx = hyρ


√


a/b.
An upper bound forM follows from the observations thatθ < 0 and that the cosine takes


values between−1 and1: we have thatD(l) ≤ 1 + 2ρ2 and


M − 1 ≤ 2ρ2 +
√


4ρ2 + 4ρ4.


Put


M ′ ≡
√


M − 1
M + 1


≤ 4


√


ρ2


1 + ρ2 .


Then, forh → (0, 0) such thatρ is fixed, we have that


−αopt = 1 + 2M ′
√


κhx +O(hx) and 1− σopt = 2
√


κhx


M ′ +O(hx).


Here we used the fact that


−αopt = 1 +
√


2(µ− 1)M ′ +O(µ− 1) and 1− σopt =
√


2(µ− 1)/M ′ +O(µ− 1)


for µ → 1 (see (3.50) and (3.51)).
So, for small stepsizesh, the ‘best’ ‘asymptotic error reduction factor’σopt is less than


one with a difference from one that is proportional to the square root ofhy.
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3.4.4.2 Control of nondominant modes: deflation


We tried to cluster the eigenvalues ofM−1
C B around one as much as possible. Withα =


αopt, at mostle eigenvalues may be located outside the disk with radiusσopt and center one.
After an initial le steps we may expect the convergence of GMRES to be determinated by
σopt (provided that the basis of eigenvectors is not too skew). Therefore, as long asle is a
modest integer, we expect GMRES to converge well in this situation. We will now argue
that, in realistic situations,le will be modest as compared to the index of the eigenvalue of
A in which we are interested. For clearness of arguments, we assume the stepsizes to be
small: h → (0, 0) with ρ fixed: λ(le) ≈ −bπ2(le/ωy)2 − θ.


Suppose that, for someτ > 0, we are interested in the smallest eigenvalueλ of A that is
larger than−τ . Since, in the Jacobi-Davidson process,θ converges toλ, θ will eventually
be larger than−τ . We concentrate on this ‘asymptotic’ situation.3


Then,le ≤ C1(τ ′) + 1, where


C1(τ ′) ≡ #{l ∈ N | l2 ≤ τ ′} and τ ′ ≡ τ
ω2


y


bπ2 .


The number of eigenvaluesλ(mx,my) ≈ −aπ2(mx/ωx)2 − bπ2(my/ωy)2 of A that are
larger than−τ is approximately equal to


C2(τ ′) ≡ #{(mx,my) ∈ N2 | m2
y +


a
b


ω2
y


ω2
x
m2


x ≤ τ ′}.


SinceC1(τ ′)2 . 2ωy
ωx


√a
b C2(τ ′), the numberle + 1 of error modes that we do not try to


control with appropriate coupling coefficients is proportional to thesquare rootof the index
number of the wanted eigenvalue (if the eigenvalues have been increasingly ordered). For
instance, ifa = b, ωx = ωy, andτ ′ = 15, then eight eigenvalues ofA are larger than
−τ , and we do not ‘control’ four modes. One of these modes corresponds with the wanted
eigenvalue and is ‘controlled’ by the projections in the correction equation of the Jacobi-
Davidson process.


In practice, deflation will be used for the computation of the, say, eight eigenvalue ofA.
The first seven eigenvalues will be computed first and will be deflated fromA. In such an
approach, the three modes that we did not try to control in our coupling, will be controlled
by the projection on the space orthogonal to the detected eigenvectors. See§3.5.2.2 for a
numerical example.


We analyzed the situation where the domain has been decomposed into two subdomains.
Of course, in practice, we will interested in a decomposition of more subdomains. In these
situations, the number of modes that we did not try to control by the coupling, will be pro-
portional to the number of artificial boundaries. For numerical results, see§3.5.4. Deflation


3The Jacobi-Davidson process can often be started in practice with an approximate eigenvector that is already
close to the wanted eigenvector. Thenθ will be close toλ. For instance, if one is interested in a number of eigenval-
ues close to some target value, then the search for the second and following eigenvectors will be started with a search
subspace that has been constructed for the first eigenvector. This search subspace will be ‘rich’ with components
in the direction of the eigenvectors that are wanted next (see [26,§3.4]).
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will be more important if the number subdomains is larger. Note that the observations in the
§§3.4.3.1 and 3.4.3.2 on the error modes that exhibit dominated behavior also apply to the sit-
uation of more than two subdomains: the essential observation in case of dominated growth
is that, on one subdomain, the influence of the ‘dominated’ component (as represented by
ζ(l)
− ) is negligible at the artificial boundary regardless the boundary condition at the other


end of the subdomain.


3.4.4.3 Stronger couplings


In §3.4.3.2, we considered coupling matricesC with eigenvectors related to ones ofLy, the
y-component of the finite difference operatorL. Instances of such matrices can easily be
formed by usingLy itself.


For ease of notation we consider the Laplace operator. Inclusion of first order terms only
results in extra factorsν (cf. (3.36) in§3.4.3.1). Consider the matrices


C`` = Crr = 1 + γLy and C`r = Cr` = α + βLy, (3.54)


whereα, β, andγ are appropriate scalars. Withβ andγ, we introduce interaction parallel
to the interface in the coupling. Thenα(l)


` in (3.41) is equal to


α(l)
` = q`(λ(l)) where q`(λ) ≡ α + βλ


1 + γλ
. (3.55)


Note that the dominant rootζ(l)
+ (cf. (3.34) withλ′ = λ(l)) depends onλ(l): ζ(l)


+ = w`(λ(l))
for some functionw`. Hence, we are interested in finding scalarsα, β, andγ for which


σ′opt ≡ max
λ


∣


∣


∣


∣


q`(λ) + w`(λ)
1 + q`(λ)w`(λ)


∣


∣


∣


∣


(3.56)


is as small as possible. Hereλ ranges over the set of eigenvaluesλ(l) of Ly that lead to a


dominant rootζ(l)
+ = w`(λ(l)). Forβ = γ = 0 we have the ‘simple coupling’ as discussed


above. For the coupling at the right side of the artificial boundary, we have similar expres-
sions. Finding the minimum of (3.56) is a non-linear problem (inα, β andγ; q` is rational
andq` is in the denominator) and can not analytically be solved. But a numerical solution
can be obtained with, for instance, a modified Rémès algorithm. We discuss our results for
a simple example in order to illustrate how much can be gained by including interactions
parallel to the artificial boundary in the coupling.


Example.Table 3.1 shows values forσ′opt for the Laplace operator on the unit square (a =
b = 1, u = v = c = 0, Ω = (0, 1) × (0, 1)), with θ = −34π2 (then le = 6 and24
eigenvalues are larger thanθ), nx = 180, ny = 120 andωx1 = 1


3 . In case 1 in the table,
we tookβ = γ = 0 and we optimized with respect toα. This case corresponds to the
‘simple coupling’ as discussed above. We learn from column 2 of Table 3.1 that an additional
parameterβ allows a considerable reduction of the damping factor.
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TABLE 3.1. The table shows the values that can be achieved for the dampingσ′opt in (3.56)for the Laplace
equation on the the unit square by optimizing the coupling in(3.54)with respect to some of the parametersα, β
andγ. For explanation see the example in§3.4.4.


1 2 3 4
optimized w.r.t. α α, β α, γ α, β, γ


σ′opt 0.696 0.157 0.376 0.093


With β = γ = 0 the explicit coupling is in thex direction only, this corresponds to a two
point stencil for the boundary conditions on the artificial boundary. The parameterβ intro-
duces a coupling in they directions which corresponds to a four point stencil for the artificial
boundary conditions. If in additionγ 6= 0, the coupling corresponds to a six point stencil.
Extension from a two to a four point stencil appears to be more effective than the extension
from a four to a six point stencil (a reduction ofσ′opt from 0.696 to 0.157 as compared to a
reduction from0.157 to 0.093 in Table 3.1). The parameterβ 6= 0 gives a coupling of the
internal boundary conditions on the artificial interface (the◦’s in Fig. 3.1), whileγ gives
a coupling of the internal boundary conditions on points of the original domain (the•’s in
Fig. 3.1 closest to the cut). Note that an optimalβ (with γ = 0) gives better values than an
optimalγ (with β = 0).


Experimentally we verified that the values forσ′opt obtained with a ‘local mode analysis’
(where we neglectedζ− terms) correspond rather well with the actual radius of the cluster of
eigenvalues ofM−1


C N: except for the firstle +1 eigenvalues, in all cases all eigenvalues of
M−1


C N are in the disc with center 0 and radiusσ′opt. Since we did not optimize for the firstle
eigenvalues, it is no surprise that these eigenvalues are not in the disc. Thele+1th eigenvalue
corresponds to the situation where|ζ(l)


+ | is closest to|ζ(l)
− | and then the predictions of the local


mode analysis may expected to be the least reliable. For an experiment with larger stepsize
see§3.5.2.3.


3.5 Numerical experiments


The experiments presented in this section illustrate the numerical behavior of the Jacobi-
Davidson method in combination with the domain decomposition method, as described in
§3.3 and§3.4. We will focus on some characteristic properties. All experiments are per-
formed withMATLAB 5.3.0 on a Sun Sparc Ultra 5 workstation.


In §3.5.1 we will discuss the circumstances under which experiments have been per-
formed. Because Jacobi-Davidson is a nested iterative method, an inexact solution of the cor-
rection equation affects the outerloop. Therefore, we will also check how the exact process
behaves and which stage of the process is most sensitive to inexact solution.


Then, in§3.5.2, we consider the spectrum of the error propagator for the asymptotic sit-
uationθ = λ. This spectrum contains all information for understanding the convergence
behavior of the Jacobi iteration method. The predictions of§3.4.4 on the optimized coupling
are verified and we investigate the effect of deflation.
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TABLE 3.2. Convergence of Jacobi-Davidson, with accurate solution of the correction equation, towards the
eigenvalue of smallest absolute value (=largest eigenmode) of the discretized (n = 99, h = 0.01) eigenvalue
problem for the one-dimensional Laplace operator.


step selected Ritz value residual selected number of correct digits
Ritz pair selected Ritz value


1 -3992.4322622 9.74e+03 -3.6
2 -1487.8343933 3.99e+03 -3.2
3 -581.73159839 1.62e+03 -2.8
4 -283.84104294 7.22e+02 -2.4
5 -123.01979659 3.23e+02 -2.1
6 -42.762088608 1.15e+02 -1.5
7 -17.253205686 4.49e+01 -0.87
8 -9.8982441731 7.41e+00 1.5
9 -9.8687926855 5.15e-04 9.8
10 -9.8687926854 6.26e-12 12


The next question is how the Jacobi-Davidson method behaves when inexact solutions
for the correction equation are obtained with Jacobi iterations. In§3.5.3 we compare differ-
ent types of coupling, and left and right preconditioning. Furthermore, we consider GMRES
as an accelerator of the Jacobi iterative method.


We conclude, in§3.5.4, with an experiment that shows what happens when we have more
than two subdomains.


3.5.1 Reference process


We first consider the standard Jacobi-Davidson method, when applied to the discretized eigen-
value problem for the Laplace operator. No domain is decomposed and correction vectors
are obtained by accurate solution of the correction equation.


The first experiment gives a global impression of the speed of convergence. For that
purpose we confine ourselves to the one-dimensional case, described in§3.4.3.1. We take
n = 99, h = 0.01. For the starting vector of the Jacobi-Davidson process, we take a random
vector generated inMATLAB (with seed equal to 226). We want to compute the eigenvalue
of smallest absolute value (λ1 = −


(


200 sin π
200


)2
= −9.86879268536 . . .). The corre-


sponding eigenvector describes the largest eigenmode of the discretized PDE.
Table 3.2 and Fig. 3.3 show what happens in the iteration process. The second column of


Table 3.2 gives the selected Ritz valueθ for the correction equation, the third column gives
the2-norm of the residualr ≡ Au−θu of the corresponding Ritz pair(θ,u), and the fourth
column lists the number of correct digits of the Ritz value:− log10 |λ− θ|.


From Table 3.2 we observe that Jacobi-Davidson needs about 8 steps before the (theoreti-
cally cubic) convergence to the desired eigenvalue sets in. This might have been expected: as
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FIGURE 3.3. Convergence behavior of Jacobi-Davidson with accurate solution of the correction equation,
when applied to the discretized (n = 99, h = 0.01) eigenvalue problem for the one-dimensional Laplace operator.
The process is started with one random vector. In each step a correction vector is computed (second column) by
which the search subspace is expanded. In the third column all Ritz values of the search subspaces before/after
expansion are printed. Right below this number the corresponding Ritz vector is graphically displayed.
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the startvector is random it is likely that the components of all eigenmodes are about equally
represented in the startvector. Therefore, in the beginning the eigenvalues with larger ab-
solute value will dominate for a while. In Fig. 3.3 we display the Ritz vectors after each
iteration of the Jacobi-Davidson process. The corresponding eigenmodes are of high fre-
quency, which explains the order of appearance of Ritz vectors (high frequencies dominate
initially).


A proper target value in the correction equation (3.21), instead of the Ritz value, may
help to overcome the initial phase of slow convergence, but this is beyond the scope of this
chapter. Our concern is the question how much the process is affected when the correction
equation is solved approximately by performing accurate solves on the subdomains only and
by tuning the interface conditions. A less accurate solution of the correction equation will,
in general, result in more steps of Jacobi-Davidson (outer iterations) for the same precision
for the approximate eigenpair. In particular, we do not want to extend the ‘slow phase’ by
destroying the ‘fast phase’ with too inaccurate solution steps. We take the ‘exact’ Jacobi-
Davidson process in Table 3.2 as our reference. In order to see what happens in the final,
potentially fast phase, we select a parabola shaped startvector.


TABLE 3.3. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem of the
two-dimensional Laplace operator (nx = 63, ny = 31, ωx = 2 andωy = 1) with accurate solutions of the
correction equation.


step θ θ − λ ‖r‖2 ‖r′‖2
1 -12.4896 -1.61e-01 4.19e+00 4.19e+00
2 -12.3286 -9.65e-07 8.55e-03 6.10e-03
3 -12.3286 -1.55e-13 1.76e-10 1.19e-10
4 -12.3286 -1.33e-13 7.71e-14 3.90e-14


In the next subsections we will mainly consider the more interesting two-dimensional
case, with physical sizesωx = 2 andωy = 1. The number of grid points inx- andy direction
arenx = 63 andny = 31, sohx : hy = 1 : 1. The eigenvalue corresponding to the largest
eigenmode of the discretized Laplace operator is equal to−12.328585 . . .. In Table 3.3 the
convergence history for Jacobi-Davidson to this eigenpair is presented when starting with
the parabolic vector


{( jx


nx + 1
(1− jx


nx + 1
),


jy


ny + 1
(1− jy


ny + 1
)) | 1 ≤ jx ≤ nx, 1 ≤ jy ≤ ny}, (3.57)


and with accurate solutions of the correction equation. The second column of this table
shows the selected Ritz value for the correction equation, the third column the errorθ − λ
for this Ritz value, and the fourth column gives the2-norm of the residualr for the corre-
sponding normalized Ritz pair. Jia and Stewart [29] have pointed out that forθ, and given
the information in the subspaceV, a better, in residual sense, approximate eigenvector can
be computed; the norm of the residual of this so-called refined Ritz vector is given by the







69 Chapter 3


quantity
‖r′‖2 = min


u∈V
‖Au− θu‖,


represented in the fifth column in Table 3.3.


These experiments set the stage for the domain decomposition experiments.


3.5.2 Spectrum of the error propagator


From§3.2.5 we know that the convergence properties of the Jacobi iterative method depend
on the spectrum of the error propagatorM−1


C N. Therefore, we will investigate these spectra
for some typical situations. We consider the asymptotic caseθ = λ. Althoughθ approxi-
matesλ in practice, during the iteration processθ becomes very close toλ, and that is the
reason we think that the asymptotic case gives a good indication.


3.5.2.1 Predicted and computed spectra


First we consider the determination of the parameterαopt (3.50) for the simple optimized cou-
pling. The value ofαopt depends on the extremal valuesµ andM of the collection of domi-
nant rootŝE (3.48) for whichαopt is optimized. The valueµ depends amongst others onθ,
andM only depends onhx, hy, and on the coefficientsa andb.


We illustrate the sensitivity ofαopt w.r.t. the lower boundµ, for θ equal to the largest
eigenvalueλ(1,1) of the Laplace operator, withωx = 2, ωy = 1, nx = 63, ny = 31
andnx1 = 26. For a dominant rootζ(l)


+ , λ(l) in (3.52) should be smaller than0. Then
4b
h2


y
sin2


(


π
2


le
ny + 1


)


> θ. Sinceθ ≈ 5
4
π2 and


4b
h2


y
sin2


(


π
2


le
ny + 1


)


≈ l2eπ
2, we have


approximately thatl2e >
5
4


. The smallest such integerle is le = 2. In order to show that this


is a sharp value forle and thus a sharp lower bound for theµ (3.53), we shall compare the
casele = 2 with the case for the smaller valuele = 1.2. We also included the casele = 4,
where apart from the modely = 1, the modesly = 2 andly = 3 are excluded from the
optimization process (i.e. for the computation of an optimalα).


For these three cases (le = 2, le = 4, andle = 1.2) we have computed the corresponding
α (α = −1.6287 . . . , α = −2.1279 . . ., andα = −1.2800 . . ., respectively). In Fig. 3.4 the
predicted amplification of the error propagatorM−1


C N for these values ofα are shown. Here
we calculated for each mode (with wavenumberly) the expected amplification|σ(ly)| with
expression (3.46). Indeed, we see that (forle = 2) the second leftmost circle (ly = 2) in
Fig. 3.4 represents the same value as for the rightmost circle (ly = 31), which was our goal.
If le is close to1, then because the modely = 1 can not be damped at all, the overall damping
for le = 1.2 is predicted to be less, whereasle = 4 should lead to a better damping of the
remaining modesly = 4, . . . , 31 that are taken into account, which is confirmed in Fig. 3.4
for different values ofα.


Fig. 3.5 shows theexactnonzero eigenvaluesσ of M−1
C N sorted by magnitude for dif-


ferent values ofα. We also plotted in this figure thepredictednonzero eigenvalues sorted
by magnitude. We see that the predictions are very accurate.
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FIGURE 3.4. Predicted amplification of the error propagatorM−1
C N with simple optimized coupling for the


largest eigenvalueλ(1,1) of the Laplace operator forle = 2, le = 4, andle = 1.2. For explanation, see§3.5.2.1.
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FIGURE 3.5. Predicted and computed nonzero eigenvalues of the error propagatorM−1
C N with simple op-


timized coupling for the largest eigenvalueλ(1,1) of the Laplace operator forle = 2, le = 4, andle = 1.2. For
explanation, see§3.5.2.1.
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In Fig. 3.5 we see also the effect of the valuele on the eigenvalues. Again, we see that
it is better to overestimatele than underestimate. The point symmetry in Fig. 3.5 is due to
the fact that ifσ is an eigenvalue ofM−1


C N then−σ is also an eigenvalue (remark (iv) of
§3.2.5). Furthermore, note that for each process one eigenvalue is equal to1, independent
of α. By a combination of remark (v) of§3.2.5 and the discussion at the end of§3.3.2, we
see that the corresponding eigenvector is of the formy that corresponds to the eigenvector
y that we are looking for with our Jacobi-Davidson process. Hence the occurrence of1 in
the spectrum is not a problem: the projections in the correction equation take care of this, as
we will show now.


3.5.2.2 Deflation


Now we show, by means of an example, how deflation improves the condition of the pre-
conditioned correction equation (3.26). For the discretized Laplace operator we takeωx =
ωy = 1, nx = ny = 31, nx1 = 15 andθ = λ(4,4). There are19 eigenvalues larger than
λ(4,4). If we determine theαopt for the simple optimized coupling, then˜le ≈ 5.6944. So the
modesly = 1, . . . , 6 are not taken into account for the optimization ofα, since they do not
show dominant behavior. Hence we do not necessarily damp these modes with the resulting
αopt.
One of them, more precisely the modely = 4, is connected to they-component of the eigen-
vectorϕ(4,4) corresponding toλ(4,4): this mode can not be controlled at all withα because
the operatorA is shifted byλ(4,4) and therefore singular in the direction ofϕ(4,4). In the
correction equation (3.26) the operator stays well-conditioned due to the projectionP that
deflates exactly the directionu = ϕ(4,4). Since the error propagator originates from the
enhanced operator in the correction equation, this projection is actually incorporated in the
error propagator (§3.3.2):PM−1


C NP.
The other non-dominant modesly = 1, 2, 3, 5, 6, can not be controlled byαopt. But, as re-
marked in§3.4.4, in practice one starts the computation with the largest eigenvalues and
when arrived atλ(4,4), the19 largest eigenvalues with corresponding eigenvectors are al-
ready computed and will be deflated from the operatorB. Deflation in the enhanced correc-
tion equation is performed by the projection


P′ ≡ I−M−1
C X


(


X∗M−1
C X


)−1
X∗.


HereX ≡ (XT
1 , X T


` , 0T , 0T , X T
r ,XT


2 )T , whereX ≡ (XT
1 , X T


` , X T
r ,XT


2 )T is a matrix of
which the columns form an orthonormal basis for the space spanned by the19 already com-
puted eigenvectors and the approximate20th eigenvector. This implies that we are dealing
with the error propagatorP′M−1


C NP′.
Forαopt we computed the nonzero eigenvalues ofM−1


C N, PM−1
C NP andP′M−1


C NP′.
In Fig. 3.6 their absolute values are plotted. The ‘+’-s (no deflation) indicate that the most
right 12 eigenvalues have not been controlled byαopt. This is in agreement with the fact that
the modesly = 1, . . . , 6 have not been taken into account for the determination ofαopt: to
each modely there correspond exactly two eigenvalues−σ(ly) and+σ(ly). Two eigenvalues
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FIGURE 3.6. The effect of deflation on the nonzero eigenvalues of the error propagator with simple optimized
coupling. For explanation, see§3.5.2.2. The dotted lines indicate the area of Fig. 3.7.
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have absolute value1 (position57 and58 on the horizontal axis). They correspond to the
eigenvectorϕ(4,4) of A.
The ‘�’-s show that deflation withu makes these absolute values become less than1. But,
with deflation byu, the other uncontrolled eigenvalues stay where they were without defla-
tion; four absolute values are even larger than2.5. Fortunately, deflation with the19 already
computed eigenvectors drastically reduces these absolute values, as the ‘◦’-s show.


From this example we learned that deflation may help to cluster the part of the spectrum
that we can not control with the coupling parameters, and therefore improves the condition-
ing of the preconditioned correction equation. The remaining part of the spectrum, that is
the eigenvalues that are in control (indicated by the dotted lines in Fig. 3.6), may be damped
even more. This will be subject of the next section.


3.5.2.3 Stronger coupling


At the end of§3.4.4, it was illustrated that the inclusion of interactions parallel to the artificial
boundary provides more coupling parameters by which a better coupling can be realized.
We will apply this now to the example in§3.5.2.2 in order to investigate how much we can
improve the spectrum of the error propagator and how accurate the value of the predicted
amplificationσ′opt is for the different types of coupling.


Table 3.4 contains the values of the coupling parameters and the predicted amplification
σ′opt for the different types of coupling whenle = 7, as in§3.5.2.2. These values are obtained
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TABLE 3.4. Values of coupling parameters and predicted amplificationσ′opt for four types of optimized cou-
pling. For explanation, see§3.5.2.3.


type no. 1 2 3 4
optimized w.r.t. α α, β α, γ α, β, γ


α −2.138 −0.4988 −1.373 −0.2080
β 0.001375 0.001959
γ 0.0002230 −0.0001352


predictedσ′opt 0.3128 0.01875 0.1196 0.007686


by application of a Ŕemès algorithm to expression (3.56). As in the final example of§3.4.4,
we see that be the best coupling is predicted to be of type4, followed by type2, and then type
3. But, the question remains what the exact spectrum may be for these types op coupling.


We computed the exact nonzero eigenvalues of the error propagatorM−1
C N for the four


types of coupling from Table 3.4. From§3.5.2.2, we know that with the coupling parameters
we only control the2ny − 12 = 50 nonzero eigenvalues of the error propagator with low-
est absolute value. Therefore, we exclude the12 other nonzero eigenvalues from our further
discussion. In Fig. 3.7 the50 eigenvalues with lowest absolute value are plotted. The corre-
sponding predicted values ofσ′opt are indicated by dotted lines in Fig. 3.7. From inspection of
the eigenvectors, we have verified that for the four different types of coupling, the12 eigen-
values with highest absolute value that are excluded correspond to the modesly = 1, . . . , 6.
(Computation of the eigenvectors is rather time consuming. Therefore, we restricted our-
selves here to a grid that is coarser than the one in the example at the end of§3.4.4.)


Indeed, as predicted, it pays off to include more coupling parameters. For type1 the
predicted value ofσ′opt is almost exact. The value for type3 seems to be accurate for the
eigenvalues at positions1, . . . , 38. For types2 and4, the value becomes less accurate after
position34. We believe that this is because of neglecting theζ− terms in the expression for
σ′opt: for types2 and4 the eigenvectors, that correspond to the eigenvalues with position larger
than34, have a low value ofly. In our quest for optimizing the spectral radius of the error
propagator, we have now arrived at a level where we can no longer ignore the contributions of
the termsζ−. This is confirmed by inspecting the eigenvectors: the eigenvalues that deviate
from the predictedσ′opt have eigenvectors that correspond to low values ofly. But still, the
predictedσ′opt gives a good indication for the quality of the coupling and will be better for
finer grids.
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FIGURE 3.7. The effect of different types of optimized coupling on the nonzero eigenvalues of the error prop-
agator. The values of the coupling parameters are given in Table 3.4. The corresponding predicted values ofσ′opt


are indicated by dotted lines. For explanation, see§3.5.2.3.
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3.5.3 Effect on the overall process


In §3.5.2 spectra of the error propagator have been studied. These spectra provide informa-
tion on the convergence behavior of the Jacobi iterative method. Now we turn our attention
to the overall Jacobi-Davidson method itself. We are interested in how approximate solu-
tions of the correction equation, obtained with a linear solver (‘the innerloop’), affects the
Jacobi-Davidson process (‘the outerloop’).


Here we consider two types of coupling:


1. the simple optimized coupling with one coupling parameterα,


2. the Neumann-Dirichlet coupling.


Although we have seen in§3.4.4 and§3.5.2.3, that there exist better choices for the cou-
pling, we believe that the overall process with the simple optimized coupling gives a good
indication of what we may expect for the stronger optimized couplings. The choice for the
Neumann-Dirichlet coupling is motivated by the fact that it is commonly used in domain
decomposition methods.


The testproblem will be the same as the one in§3.5.2.1. First we discuss the Jacobi it-
erative method as a solver for the correction equation. We do this for both the left and right
preconditioned variant. Then we compare the results with those obtained by the GMRES
method.
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TABLE 3.5. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem of the
two-dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and
right (right) preconditioned Jacobi iterations on two subdomains and simple optimized coupling. For explanation
see§3.5.3.1.


optimized coupling,le = 2
left DD-preconditioned right DD-preconditioned


step θ − λ ‖r‖2 ‖r′‖2 α θ − λ ‖r‖2 ‖r′‖2 α
3 Jacobi inner iterations 2 Jacobi inner iterations


1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -4.98e-03 3.14e+00 2.55e+00 -1.6287-4.98e-03 3.14e+00 2.55e+00 -1.6287
3 -2.20e-04 1.90e-01 1.81e-01 -1.6287-2.20e-04 1.90e-01 1.81e-01 -1.6287
4 -1.62e-07 7.12e-03 6.74e-03 -1.6287-1.62e-07 7.12e-03 6.74e-03 -1.6287
5 -2.13e-12 4.16e-05 3.91e-05 -1.6287-2.09e-12 4.16e-05 3.91e-05 -1.6287
6 -1.53e-13 1.36e-06 9.37e-07 -1.6287-1.47e-13 1.36e-06 9.37e-07 -1.6287
7 -1.62e-13 8.43e-09 5.78e-09 -1.6287-1.81e-13 8.43e-09 5.78e-09 -1.6287
8 -1.39e-13 1.19e-10 8.84e-11 -1.44e-13 1.19e-10 8.84e-11


4 Jacobi inner iterations 3 Jacobi inner iterations
1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -4.23e-03 2.89e+00 2.43e+00 -1.6287-4.23e-03 2.89e+00 2.43e+00 -1.6287
3 -2.70e-05 6.42e-02 6.20e-02 -1.6287-2.70e-05 6.42e-02 6.20e-02 -1.6287
4 -5.95e-09 1.02e-03 7.36e-04 -1.6287-5.95e-09 1.02e-03 7.36e-04 -1.6287
5 -1.53e-13 2.84e-06 2.61e-06 -1.6287-1.58e-13 2.84e-06 2.61e-06 -1.6287
6 -1.76e-13 2.81e-08 1.54e-08 -1.6287-9.95e-14 2.81e-08 1.54e-08 -1.6287
7 -1.44e-13 8.33e-12 8.30e-12 -1.42e-13 8.34e-12 8.28e-12


3.5.3.1 The Jacobi iterative process


In §3.5.2.1 we have computed the spectra of the error propagatorM−1
C N, for αopt and two


other near optimal values ofα. We further investigate these three cases for the Jacobi itera-
tive process.


Table 3.5 shows the convergence behavior of Jacobi-Davidson, when the correction equa-
tion is solved with the Jacobi iterative method and with coupling parameterαopt, obtained for
le = 2. The left (on the left) and right (on the right) preconditioned variant are presented.
Moreover, we have varied the number of Jacobi inner iterations.


When we compare the top part of Table 3.5 with the bottom part, then we see that more
Jacobi inner iterations lead to less outer iterations for the same precision. More Jacobi iter-
ations yields a better approximation of the correction vector and a better approximation of
the correction vector results in fewer Jacobi-Davidson steps. When we compare the left part
with the right part in Table 3.5, then we see thatm steps with right preconditioned Jacobi iter-
ations produces exactly the same results as withm+1 left preconditioned Jacobi iterations.
This is explained by stage1 in §3.3.3 of right preconditioning: one extra preconditioning
step is performed.


From§3.5.2.1 we know that the spectra of the error propagator are less optimal forle = 4
andle = 1.2, and therefore Jacobi will perform not as good as forle = 2. How does this
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TABLE 3.6. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two-dimensional Laplace operator for approximate solutions to the correction equation obtained with 3 left pre-
conditioned Jacobi iterations on two subdomains and two almost optimal simple couplings. For explanation see
§3.5.3.1.


step θ − λ ‖r‖2 ‖r′‖2 α θ − λ ‖r‖2 ‖r′‖2 α
le = 4 le = 1.2


1 -1.61e-01 4.19e+00 4.19e+00 -2.1274-1.61e-01 4.19e+00 4.19e+00 -1.2729
2 -2.93e-03 2.27e+00 2.00e+00 -2.1279-1.33e-02 5.03e+00 3.31e+00 -1.2794
3 -1.12e-03 5.92e-01 4.62e-01 -2.1279-1.92e-06 2.96e-02 2.94e-02 -1.2800
4 -1.46e-05 6.50e-02 5.83e-02 -2.1279-4.11e-10 6.69e-04 5.57e-04 -1.2800
5 -4.02e-10 5.91e-04 5.71e-04 -2.1279-1.18e-12 5.35e-05 3.97e-05 -1.2800
6 -2.47e-12 6.71e-05 4.05e-05 -2.1279-1.24e-13 1.45e-06 1.21e-06 -1.2800
7 -1.47e-13 1.82e-07 1.14e-07 -2.1279-3.13e-13 9.31e-08 5.82e-08 -1.2800
8 -1.67e-13 2.84e-10 2.82e-10 -1.46e-13 2.83e-09 2.09e-09 -1.2800
9 -1.72e-13 1.24e-10 1.09e-10


affect the Jacobi-Davidson process? In Table 3.6 data are presented for three left precondi-
tioned Jacobi iterations in each outer iteration, forle = 4 (left) andle = 1.2 (right). We
should compare this with the top left part of Table 3.5. From this we see, that also Jacobi-
Davidson performs less well for less optimal couplings.


Now we consider the Neumann-Dirichlet coupling. In our enhancement terminology (cf.
§3.2.2) this can be interpreted as a Neumann boundary condition on the left:C`` = I and
C`r = −I, and a Dirichlet boundary condition on the right:Cr` = I andCrr = I. For
dominated behavior (cf.§3.4.3.1 (iii), and§3.4.4 (3.48)) and for two subdomains it follows
from (3.16) that


σ2 ≈ (ζ − 1) (1 + ζ)


(1− ζ) (ζ + 1)
= −1.


From this we see that forθ = λ(1,1), the error propagator has, besides−1 and+1, only eigen-
values near−


√
−1 and


√
−1. Hence, the eigenvectors ofM−1


C N will hardly be damped.
Therefore, the Jacobi iteration will not perform well with Neumann-Dirichlet coupling. From
Table 3.7 we see that Jacobi-Davidson clearly suffers from this effect.
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TABLE 3.7. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two-dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left) and
right (right) preconditioned Jacobi iterations on two subdomains and Neumann-Dirichlet coupling. For explana-
tion see§3.5.3.1.


Neumann-Dirichlet coupling
left DD-preconditioned right DD-preconditioned


step θ − λ ‖r‖2 ‖r′‖2 θ − λ ‖r‖2 ‖r′‖2
4 Jacobi inner iterations 3 Jacobi inner iterations


1 -1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+00
2 -5.07e-02 8.72e+00 3.98e+00-5.07e-02 8.72e+00 3.98e+00
3 -1.79e-02 4.85e+00 3.29e+00-1.79e-02 4.85e+00 3.29e+00
4 -1.20e-02 2.40e+00 2.03e+00-1.20e-02 2.40e+00 2.03e+00
5 -4.55e-03 2.69e+00 1.68e+00-4.55e-03 2.69e+00 1.68e+00
6 -2.93e-04 6.90e-01 6.13e-01-2.93e-04 6.90e-01 6.13e-01
7 -1.40e-04 3.74e-01 3.29e-01-1.40e-04 3.74e-01 3.29e-01
8 -2.00e-05 2.10e-01 1.74e-01-2.00e-05 2.10e-01 1.74e-01
9 -4.11e-06 7.32e-02 6.63e-02-4.11e-06 7.32e-02 6.63e-02
10 -8.12e-07 3.88e-02 3.49e-02-8.12e-07 3.88e-02 3.49e-02
11 -1.54e-07 1.41e-02 1.12e-02-1.54e-07 1.41e-02 1.12e-02
12 -1.50e-08 5.84e-03 5.28e-03-1.50e-08 5.84e-03 5.28e-03
13 -3.20e-09 2.62e-03 1.59e-03-3.19e-09 2.62e-03 1.58e-03
14 -7.27e-10 1.22e-03 1.01e-03-3.68e-10 9.02e-04 8.00e-04
15 -1.31e-10 5.86e-04 5.38e-04-1.30e-10 5.82e-04 5.35e-04
16 -2.34e-11 2.63e-04 1.72e-04-2.35e-11 2.63e-04 1.72e-04
17 -2.26e-12 5.03e-05 4.78e-05-4.16e-13 5.03e-05 4.78e-05
18 -7.46e-13 2.08e-05 1.65e-05-5.68e-14 2.08e-05 1.65e-05
19 -1.63e-13 3.90e-06 3.21e-06-7.53e-13 3.88e-06 3.19e-06
20 4.12e-13 1.49e-06 1.25e-06 1.14e-13 1.27e-06 1.04e-06
21 9.95e-13 8.53e-07 7.63e-07 6.25e-13 3.60e-07 2.54e-07
22 -6.79e-13 2.55e-07 1.30e-07-3.91e-13 2.30e-07 1.25e-07
23 4.01e-13 3.81e-08 3.56e-08-7.11e-14 3.81e-08 3.56e-08
24 7.11e-14 1.18e-08 8.40e-09-5.47e-13 1.18e-08 8.39e-09
25 4.90e-13 1.45e-09 1.41e-09 2.98e-13 1.19e-09 1.16e-09
26 6.98e-13 6.58e-10 6.30e-10-5.90e-13 5.02e-10 4.80e-10
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TABLE 3.8. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two-dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left)
and right (right) preconditioned GMRES on two subdomains and simple optimized coupling. For explanation see
§3.5.3.2.


optimized coupling,le = 2
left DD-preconditioned right DD-preconditioned


step θ − λ ‖r‖2 ‖r′‖2 α θ − λ ‖r‖2 ‖r′‖2 α
GMRES(3) GMRES(2)


1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -2.72e-05 1.67e-01 1.67e-01 -1.6287-3.74e-05 1.16e-01 1.16e-01 -1.6287
3 -3.05e-08 6.68e-03 6.23e-03 -1.6287-5.89e-08 6.63e-03 5.43e-03 -1.6287
4 -3.06e-11 2.72e-04 2.71e-04 -1.6287-1.46e-11 1.19e-04 1.13e-04 -1.6287
5 1.78e-15 1.72e-06 1.66e-06 -1.6287-1.56e-13 1.46e-06 1.26e-06 -1.6287
6 -2.59e-13 1.34e-08 1.03e-08 -1.6287-1.69e-13 6.81e-09 5.71e-09 -1.6287
7 -1.26e-13 7.94e-10 6.71e-10 -7.28e-14 4.38e-11 4.03e-11


GMRES(4) GMRES(3)
1 -1.61e-01 4.19e+00 4.19e+00 -1.6275-1.61e-01 4.19e+00 4.19e+00 -1.6275
2 -1.52e-06 3.07e-02 3.02e-02 -1.6287-1.34e-06 2.76e-02 2.71e-02 -1.6287
3 -1.39e-12 3.35e-05 3.32e-05 -1.6287-4.85e-12 4.30e-05 4.13e-05 -1.6287
4 -1.42e-13 1.87e-07 1.76e-07 -1.6287-1.42e-13 7.62e-07 7.31e-07 -1.6287
5 -1.79e-13 1.21e-09 1.17e-09 -1.6287-1.19e-13 3.20e-09 3.19e-09 -1.6287
6 -1.85e-13 4.64e-12 4.09e-12 -1.28e-13 1.10e-11 1.05e-11


3.5.3.2 GMRES


At the end of§3.2.3 we noted that Krylov subspace methods can be viewed as accelerators of
the Jacobi iterative method. If we apply GMRES for the solution of the correction equation,
instead of Jacobi iterations as in§3.5.3.1, then we should expect at least the same speed of
convergence in the inner iteration. As a consequence, the speed of convergence of the Jacobi-
Davidson (outer) iteration should be not worse but presumably better.


Our expectations are confirmed by the results in Table 3.8, for the simple optimized cou-
pling and in Table 3.9 for the Neumann-Dirichlet coupling. For the same type of coupling
one should compare the data for GMRES(m) with m Jacobi iterations: GMRES optimizes
over the Krylov subspace spanned by powers of the (preconditioned) operator, whereas Ja-
cobi uses only the last iteration vector for the computation of a solution to the linear system.


Note that with left preconditioned GMRES(4) and with Neumann-Dirichlet coupling, we
have almost recovered the exact Jacobi-Davidson process from§3.5.1. This can be explained
as follows. The eigenvalue distribution of the error propagator has besides−1 and+1, all
other eigenvalues clustered around±


√
−1 for two subdomains. However, for four distinct


eigenvalues, GMRES needs four steps at most for convergence. So the spectral properties of
the error propagator for two subdomains with Neumann-Dirichlet coupling are worse for the
Jacobi iterative method but ideal for the acceleration part of GMRES. This is not a typical
situation. In§3.5.4 we will see how the picture changes for more subdomains and with less
accurate preconditioners.
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TABLE 3.9. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two-dimensional Laplace operator for approximate solutions to the correction equation obtained with left (left)
and right (right) preconditioned GMRES on two subdomains and Neumann-Dirichlet coupling. For explanation
see§3.5.3.2.


Neumann-Dirichlet coupling
left DD-preconditioned right DD-preconditioned


step θ − λ ‖r‖2 ‖r′‖2 θ − λ ‖r‖2 ‖r′‖2
GMRES(3) GMRES(2)


1 -1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+00
2 -1.20e-04 3.80e-01 3.80e-01-5.87e-05 8.67e-02 8.48e-02
3 -5.48e-05 2.00e-01 1.96e-01-7.21e-09 2.19e-03 2.18e-03
4 -1.13e-06 2.78e-02 1.73e-02-1.71e-13 1.57e-06 1.22e-06
5 -1.99e-08 5.95e-03 4.43e-03-1.49e-13 3.25e-08 3.09e-08
6 -8.17e-12 7.64e-05 7.48e-05-1.74e-13 3.10e-12 2.98e-12
7 -1.79e-13 3.88e-06 3.83e-06
8 -1.99e-13 1.41e-07 1.32e-07
9 -1.14e-13 1.90e-09 1.61e-09
10 -1.71e-13 4.80e-11 2.58e-11


GMRES(4) GMRES(3)
1 -1.61e-01 4.19e+00 4.19e+00-1.61e-01 4.19e+00 4.19e+00
2 -9.65e-07 8.55e-03 6.10e-03-9.65e-07 8.55e-03 6.10e-03
3 -1.44e-13 5.84e-10 5.79e-10-1.55e-13 5.35e-10 5.30e-10
4 -1.21e-13 8.56e-14 1.01e-14-1.49e-13 3.92e-14 4.12e-14
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3.5.4 More subdomains


We describe an experiment that illustrates what happens when the number of subdomains is
increased. For each number of subdomains we keep the preconditioner fixed.


Our modelproblem is a channel that is made larger by extending new subdomains. We
compute the largest eigenvalue and corresponding eigenvector of the Laplace operator on
this channel. After adding a subdomain, this results in a different eigenvalue problem. For
p subdomains the physical size and number of gridpoints in they direction are taken to be
fixed: ωy = 1 andny = 63, whereas in thex direction they increase:ωx = p andnx =
63 + (p− 1) · 64 for 1 ≤ p ≤ 6.


Now, the idea is that the DD-preconditioner consists of block matrices defined on the
enhanced subdomain grids. For the channel this results in one block matrix of size(63 +
1)× (63+1) (corresponding to the first subdomain on the left),p−2 block matrices of size
(64+2)×(64+2) (corresponding to thep−2 intermediate subdomains) and one block matrix
of size(64 + 1)× (64 + 1) (corresponding to the last subdomain on the right). If we select
the same coupling between all subdomains, then we need to know the inverse action of3
blocks (corresponding to the left, right, and a single intermediate subdomain). Furthermore,
we construct the preconditioner only for the value ofθ1 of the first Jacobi-Davidson step.
This fixed preconditioner is used for all iteration steps.


In order to be able to interpret the results properly, we have checked how Jacobi-Davidson
with accurate solutions to the correction equation on the undecomposed domain (the ‘exact’
process) behaves. In Fig. 3.8 and Fig. 3.9 this is represented by the solid line.


We consider simple optimized (type 1), strong optimized (type 4), and Neumann-Dirichlet
couplings. In each Jacobi-Davidson step we solve the correction equation approximately by
right preconditioned GMRES(3). The number of nonzero eigenvalues of the error propaga-
tor is proportional to the number of subdomains. Because of this, it is reasonable that with
a fixed number of inner iterations the accuracy will deteriorate for more subdomains.


Fig. 3.8 represents the convergence history of Jacobi-Davidson for the ‘exact process’
and for the inexact processes with different types of coupling, when starting with the vector
(3.57). The ‘exact process’ does not change significantly for increasing values ofp. For the
inexact processes, the number of outer iterations increases when the number of subdomains
increases (as expected). For the simple optimized coupling one can roughly say that con-
vergence onp subdomains requires5 + p outer iterations. The strong optimized coupling
needs about1− 2 iterations less. But for the Neumann-Dirichlet coupling the results do not
show such a linear relationship: when increasing from2 to 3 or from3 to 4 subdomains, the
number of outer iterations almost doubles.


When we compare the right bottom part of Table 3.9 with the two subdomain case in
Fig. 3.8, then we see what happens when the preconditioner is less accurate for Neumann-
Dirichlet coupling: the exact Jacobi-Davidson process can not longer be reproduced. Be-
cause the shiftθ1 in MC is not equal to the shiftθ in BC , the eigenvalues of the error prop-
agator that were close to±


√
−1 (cf. §3.5.3) start to deviate. This results in worse circum-


stances for GMRES.
From these results we conclude that the optimized couplings outperform the Neumann-


Dirichlet coupling for more than2 subdomains and a less accurate preconditioner
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FIGURE 3.8. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two-dimensional Laplace operator for accurate solutions to the correction equation and increasing values ofωx
andnx (solid lines) versus approximate solutions to the correction equation obtained from right preconditioned
GMRES(3) with strong optimized (type 4) coupling (dashed lines with ‘◦’), simple optimized (type 1) coupling
(dash-dotted lines with ‘@A’) and Neumann-Dirichlet coupling (dotted lines with ‘∗’) on an increasing number
of subdomains. For explanation see§3.5.4.
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FIGURE 3.9. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two-dimensional advection-diffusion operator (3.58) for accurate solutions to the correction equation and increas-
ing values ofωx andnx (solid lines) versus approximate solutions to the correction equation obtained from right
preconditioned GMRES(3) with simple optimized (type 1) coupling (dash-dotted lines with ‘@A’) on an increasing
number of subdomains. For explanation see§3.5.4.
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So far we have only considered the eigenvalue problem for the Laplace operator. The
analysis of§3.4 also accommodates problems with first order operators. To illustrate that
this does not give essential differences, we consider


∂2


∂x2 +
2
p


∂
∂x


+
∂2


∂y2 + 5
∂
∂y


(3.58)


on a domain with physical sizesωx = 5
4p andωy = 3


4 . Herep ∈ {2, 3, 4} is the number of
subdomains. With Jacobi-Davidson we compute the largest eigenvalue. In order to be in the
convergence region of interest, Jacobi-Davidson is started with a vector equal to(A−25I)−1


times the vector (3.57) (25 is close to the largest eigenvalue). All other settings are the same
as in the previous experiment of this section.


Fig. 3.9 shows the convergence history of Jacobi-Davidson for accurate solutions and for
approximate solutions of the correction equation. The approximate solutions are obtained
from right preconditioned GMRES(3) with simple optimized (type 1) coupling. As in the
previous experiment, the preconditioner is constructed only once at the first Jacobi-Davidson
step. We see that the pictures in Fig. 3.9 are similar to those in Fig. 3.8.
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3.6 Conclusions


In this chapter we have outlined and analyzed how a nonoverlapping domain decomposition
technique can be incorporated in the Jacobi-Davidson method. For large eigenvalue prob-
lems the solution of correction equations may become too expensive in terms of CPU time
or/and memory. Domain decomposition may be attractive in a parallel computing environ-
ment.


For a model eigenvalue problem with constant coefficients we have analyzed how the
coupling equations should be tuned. By numerical experiments we have verified our analy-
sis. Indeed, further experiments showed that tuning of the coupling results in faster conver-
gence of the Jacobi-Davidson process.


In realistic problems, the coefficient functions will not be constant and the domain will
have a complicated geometry. For the determination of suitable coupling matrices, we intend
to locally apply the approach that we discussed here. This ‘local’ approach is one of the
subjects of the next chapter.











Chapter 4


Domain decomposition for the
Jacobi-Davidson method:
practical strategies


Abstract


The Jacobi-Davidson method is an iterative method for the computation of so-
lutions of large eigenvalue problems. In each iteration the (approximate) solu-
tion of a specific linear system is needed. In an chapter 3 we proposed a strat-
egy based on a nonoverlapping domain decomposition technique for the com-
putation of (approximate) solutions of such a linear system. That strategy was
analysed for model problems with simple domains. In this chapter we discuss
aspects that are relevant for eigenvalue problems with variable coefficients and
more complicated domains.


Keywords: Eigenvalue problems, domain decomposition, Jacobi-
Davidson, Schwarz method, nonoverlapping, iterative methods.
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4.1 Introduction


The Jacobi-Davidson method [46] is an iterative method for the computation of several se-
lected eigenvalues and corresponding eigenvectors of large scale eigenvalue problems. The
major part, in terms of computational work and memory requirements, of this method results
from solving the so called correction equation. To reduce this work, we proposed in chap-
ter 3 an approach for the computation of (approximate) solutions of the correction equation
with a domain decomposition method for eigenvalue problems related to PDE’s. The do-
main decomposition method, a nonoverlapping additive Schwarz method is based on work
by Tang [57] and Tan & Borsboom [55, 56] for ordinary linear systems. Application of this
domain decomposition method to the correction equation is not straightforward because the
correction equation is not an ordinary linear system: the linear operator is shifted by an (ap-
proximate) eigenvalue and involves two projections. Also the tuning of the domain coupling
parameters needs additional care. For the tuning of these parameters in§3.4 of chapter 3 we
analysed a model eigenvalue problem: an advection-diffusion operator with constant coef-
ficients.


Here we further refine the domain decomposition approach for Jacobi-Davidson. The
point of view in this chapter is more practical than conceptual. It contains two major ingre-
dients: the construction of a preconditioner in case of variable coefficients in the PDE (§4.3)
and domain decomposition of more complicated geometries (§4.4). First, we give in§4.2 a
recapitulation of the most relevant results in chapter 3.


4.2 Domain decomposition in Jacobi-Davidson


Here we recapitulate the incorporation of a domain decomposition method in the Jacobi-
Davidson method, as proposed in chapter 3. The domain decomposition method is a nonover-
lapping additive Schwarz method and based on work by Tang [57] and further generalized
by Tan & Borsboom [55, 56]. Although in this section the two subdomain case is considered,
it can easily be generalized to the case of more than two subdomains in one direction (see
§3.5.4 of chapter 3), and it leads to obvious strategies for more general subdomain splittings
as we will see in this chapter.


4.2.1 A nonoverlapping additive Schwarz method


Suppose we want to compute a solution of the linear system


By = d, (4.1)


which originates from the discretization of some partial differential equation on a domainΩ.
Such a discretization typically results in a bandedB and the unknownsy are coupled only
locally. The domainΩ is decomposed into two nonoverlapping subdomainsΩ1 andΩ2. Γ is
the interface betweenΩ1 andΩ2. By taking into account the band structure on the subgrids
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that coverΩ1 andΩ2, we partitionB, y, andd, respectively, as














B11 B1` B1r 0
B`1 B`` B`r 0
0 Br` Brr Br2


0 B2` B2r B22














, y ≡
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dr
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respectively.


The labels (1, `, r, and2 respectively) indicate the relation to the grid of the elements/operations
(Ω1, left from Γ, right fromΓ, andΩ2, respectively). For instance,B11 is the part ofB re-
stricted to the interior gridpoints ofΩ1, B`` is the part restricted to the gridpoints inΩ1 left
from Γ, B`r is the part that couples gridpoints inΩ1 left from Γ to adjacent gridpoints inΩ2


right from Γ, etc. For these partitionings we define the correspondingcanonical enhance-
mentsby
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.


(4.2)
HereC is a nonsingular interface coupling matrix:


C ≡
[


C`` C`r


−Cr` −Crr


]


, (4.3)


andỹ` andỹr are extra unknowns.
With these enhancements the enhancement of linear system (4.1) is defined:


BC y∼ = d. (4.4)


Note that the solutiony∼ of (4.4) yields the components of the solutiony of (4.1). It will turn
out that (4.4) lends itself more for parallel computing by tuning theC-matrices carefully.


The idea is to precondition the enhanced system (4.4) by performing accurate solves on
the subdomainsΩ1 andΩ2 (indicated by the framed parts in (4.2)) and to tune the coupling
C between the subdomains (outside the framed parts) to speed up the iteration process for
the computation of solutions to (4.4). Hence, the matrixBC is split asBC = MC − N,
where the preconditionerMC is the framed part ofBC in (4.2). Approximate solutions to
the preconditioned enhanced system


M−1
C BC y∼ = M−1 d (4.5)


will be computed with an iterative method. Observe that the iterates of such a method are
linear combinations of powers ofM−1


C BC . The tuning of the couplingC is based on that
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observation: performing subdomain solves withMC of the matrix splittingBC = MC −
N induces approximation errors, these errors are propagated in each iteration by theerror
propagation matrixM−1


C N. The matrixC is chosen so that these errors are damped out by
higher powers ofM−1


C BC = I − M−1
C N. For this tuning we use information from the


equations that lead after discretization toB. Tan and Borsboom [55, 56] constructed such a
tuning for ordinary linear systems that originate from advection dominated problems.


4.2.2 Jacobi-Davidson and the correction equation


Now, we briefly summarize the Jacobi-Davidson method [46]. This method computes iter-
atively a solution for a (generalized) eigenvalue problem. We restrict ourselves to standard
eigenvalue problemsAx = λx. Each iteration step of Jacobi-Davidson consists of


1. the computation of an approximate solution(θ,u) to the wanted eigenpair(λ,x) from
a subspace via a Rayleigh-Ritz principle,


2. the computation of a vectort that corrects the approximate eigenvectoru from a cor-
rection equation:


t ⊥ u, (I− uu∗) (A− θ I ) (I− uu∗) t = r with r ≡ θ u−Au, (4.6)


3. the expansion of the subspace witht.


The computation of (approximate) solutions of correction equation (4.6) involves most of the
computational work of the Jacobi-Davidson method. This is the motivation for investigating
the domain decomposition method, in an attempt to speed up parallel computation.


For that purpose, we showed in§3.3 of chapter 3 how to enhance the correction equation
(4.6):


t ⊥ u, (I− uu∗)BC (I− uu∗) t = r, (4.7)


with B ≡ A − θ I, u ≡ (uT
1 , uT


` , 0T , 0T , uT
r ,uT


2 )T , andr ≡ (rT
1 , r T


` , 0T , 0T , r T
r , rT


2 )T .
Then a, for instance, left preconditioner


(I− uu∗)MC(I− uu∗)


can be incorporated as follows:


PM−1
C BC Pt = PM−1


C r with P ≡ I− M−1
C uu∗


u∗M−1
C u


. (4.8)
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4.2.3 Tuning of the coupling for the correction equation


For a model eigenvalue problem of an advection-diffusion operator


L = a
∂2


∂x2 + b
∂2


∂y2 + u
∂
∂x


+ v
∂
∂y


+ c, (4.9)


with constantcoefficientsa, b, u, v, andc we proposed efficient coupling parameters for the
correction equation in§3.4 of chapter 3. We recollect the main results here. For specific
details we refer to the original paper.


The operator (4.9) is assumed to be discretized over a rectangular grid over a rectan-
gular domain by, say, standard 5-point discretization stencils. The discretized operator is
expressed as a sum of tensor products of one-dimensional operators:


L = Lx ⊗ I + I⊗ Ly.


We exploit exact information about the eigenvectors of the operatorLy in the direction paral-
lel to the interface. Perpendicular to the interface, essentially two different types of behavior
can be distinguished: globally harmonic and locally dominating behavior. By approximating
the dominating behavior with the dominants, specific knowledge on the number of gridpoints
in the direction perpendicular to the interface is avoided. This leads to very useful coupling
parameters.


The coupling parameters are expressed by the components of the interface coupling ma-
trix C (4.3):


C`` = Crr = 1 + γLy and C`r = Cr` = α + βLy. (4.10)


In §3.4.4 of chapter 3 different types of optimized coupling are distinguished, depending on
which of the coupling parametersα, β, andγ are used for the optimization. Coupling with
parameterα only is referred to as simple optimized coupling, and combinations ofα with β
and/orγ as stronger optimized couplings.


For all these types of optimized coupling, the procedure to determine the collection̂E
((3.48) in§3.4.4 of chapter 3) that corresponds to the modes with dominated behavior is the
same. This determination consists of the computation of the extremal values of̂E: the lower
boundµ and the upper boundM . For the operator (4.9) with constant coefficients, the pa-
rameterµ depends amongst others on the shiftθ and turns out to be a critical parameter (see
§3.5.2.1 in chapter 3), whereasM only depends on the mesh widths and the coefficients (see
the expression forM in §3.4.4 of chapter 3). The lower boundµ is computed by means of
the integer valuele. Thisle is in the range of all possible wave numbersly of the eigenvalue
problem in they-direction and marks the subdivision in harmonic and dominated behavior
of the eigenvectors of the error propagation matrix in thex-direction.
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4.3 Variable coefficients


In this section we outline a strategy for the eigenvalue problem associated with a convection-
diffusion operator with variable coefficients. The main idea is based on the assumption that
variable coefficients can be approximated locally by frozen coefficients. With this strategy
we construct preconditioners for some relevant examples. For these cases the spectrum of the
resulting error reduction matrix is also computed in order to show the effects of the strategy.


4.3.1 Frozen coefficients


In this section the two-dimensional advection-diffusion operator (4.9) will havevariableco-
efficientsa = a(x, y), b = b(x, y), u = u(x, y), v = v(x, y), andc = c(x, y) for (x, y) ∈ Ω.
We will show how the preconditionerMC can be constructed for this case.


First observe that, globally, two parts can be distinguished in the preconditionerMC :


• a subblockMp that describes the local subproblem on subdomainΩp,


• the couplingC between the subdomains/subproblems that consists of the coupling pa-
rameters.


The coupling parameters are optimized with respect to those eigenmodes of the error prop-
agation matrix associated with locally dominating behavior. These eigenmodes reduce ex-
ponentially when moving away from the interface. Therefore, effective coupling parameters
can be interpreted (§3.2.5 of chapter 3) as those values for which the subproblems are decou-
pled “as much as possible”. So, with respect to the modes with dominating behavior, a local
phenomenon on subdomainΩp is expected to be captured well by subblockMp with effec-
tive coupling parameters and these modes are relevant over a small area near the interface
only.


This observation motivates the following strategy offrozencoefficients, here thex-direction
(y-direction) refers to the direction perpendicular (parallel) to the interface:


• For each grid point in they-direction we consider the values of the coefficients locally
near the interface.


• With these values of the coefficients, we compute effective coupling parameters for a
problem with appropriate constant coefficients.


• These computed coupling parameters are used as the local coupling parameters for the
problem with variable coefficients.


Although, for simplicity, we consider the simple coupling withα (4.10) (§3.4.4 of chapter
3) only, the strategy can also be applied for stronger couplings. For variable coefficients we
can estimatele only roughly, therefore we allow a continuousle here: we compute its values
by le ≡ ˜le + 1 instead ofle ≡ b˜lec+ 1 as in§3.4.4 of chapter 3.


We will now describe several illustrative numerical experiments. The experiments are
performed inMATLAB 5.3.
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4.3.2 Numerical experiments


We will illustrate the construction of the preconditionerM, with the strategy formulated in
§4.3.1, by some numerical experiments. We do this for two subdomains, similar to the con-
stant coefficients problem. Effective coupling parameters for more subdomains can be de-
rived from the two subdomain case. Recall that, thex-direction (y-direction) refers to the
direction perpendicular (parallel) to the interface.


The eigenvalue problemL ϕ̂ = ̂λ ϕ̂, for the operator defined by (4.9), with variable co-
efficients and Dirichlet conditions on the external boundary ofΩ, gives rise to a matrixA
with eigenvalueλ after discretization. We consider the correction equation in the asymptotic
case, i.e. we take forθ the exact eigenvalueλ in the correction equation. So a preconditioner
M will be constructed for the operatorBC whereB ≡ A − λ I. After construction of the
preconditioner we will investigate its effectiveness by computing the nonzero eigenvalues
of the error propagation matrixI−M−1BC .


First we investigate the dependency of the preconditioner on the position of the inter-
face (§4.3.2.1). This is motivated by the fact that for constant coefficients the preconditioner
does not depend on the position of the interfaceΓ. Then we do some numerical experiments
with coefficients that are typical for practical situations: coefficients that behave (locally)
exponential (§4.3.2.2), harmonical (§4.3.2.3), and with (locally) a large jump (§4.3.2.4).
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FIGURE 4.1. Nonzero eigenvalues of the error propagation matrix for the eigenvalue problem of situation
A, the constant coefficients case, in§4.3.2.1. Shown are the eigenvalues for three different configurations of the
two subdomains: interface at the left (‘◦’), interface in the middle (‘ +’) and interface at the right (‘@A’). The
eigenvalues are sorted (x-axis) by order of magnitude (y-axis).
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4.3.2.1 Small jump coefficient perpendicular to interface


First we investigate whether the preconditioner depends much on the position of the interface
for a modest variation in the coefficient in thex-direction. For that purpose we consider the
following two situations onΩ ≡ (0, 4)× (0, 1):


• situation A:


L =
3
2


(


∂2


∂x2 +
∂2


∂y2


)


,


• situation B:


L =


{


∂2


∂x2 + ∂2


∂y2 for 0 < x < 2


2
(


∂2


∂x2 + ∂2


∂y2


)


for 2 ≤ x < 4
,


and we are interested in the largest eigenvalue ofL.
DomainΩ is covered by a60×15 grid and is decomposed inΩ1 andΩ2 in three different


ways:


• configuration with interface more leftwards:


Ω1 = (0, 1
1
3
)× (0, 1) and Ω2 = (1


1
3
, 4)× (0, 1),







93 Chapter 4


FIGURE 4.2. Nonzero eigenvalues of the error propagation matrix for the eigenvalue problem of situation B,
the case with a modest jump in the coefficient in thex-direction, in§4.3.2.1. Shown are the eigenvalues for three
different configurations of the two subdomains: interface at the left (‘◦’), interface in the middle (‘ +’) and interface
at the right (‘@A’). The eigenvalues are sorted (x-axis) by order of magnitude (y-axis).
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• configuration with interface in the middle:


Ω1 = (0, 2)× (0, 1) and Ω2 = (2, 4)× (0, 1),


here the interface is located precisely at the jump of thex-coefficient,


• configuration with interface more to the right:


Ω1 = (0, 2
2
3
)× (0, 1) and Ω2 = (2


2
3
, 4)× (0, 1).


For the constant coefficients situation A it is known (§3.4.4 of chapter 3) that the eigenval-
ues of the error propagation matrix do not depend much on the location of the interface, i.e.
for this two subdomain case they are virtually independend ofnx1. Therefore all three con-
figurations will yield practically the same spectrum. This is confirmed by the results of the
numerical experiment, as is shown in Fig. 4.1.


Situation B has a jump in the coefficient in thex-direction and we can not predict what
will happen. Application of the strategy in§4.3.1 leads to the following coupling parameters:
α` = αr = −2.15 (left configuration),α` = −2.15 andαr = −2.07 (middle configura-
tion), andα` = αr = −2.07 (right configuration). Obviously, the values of theα’s do not
vary much. For these values the preconditioners are constructed. The corresponding spectra
of I−M−1 BC are shown in Fig. 4.2. From this we conclude that also these spectra do not
differ much: they almost behave as for a constant coefficient problem. Apparently, the po-
sition of the interface does not play a role of importance for the construction of an optimal
preconditioner for a modest variable coefficient in thex-direction.







Practical strategies 94


4.3.2.2 Exponential coefficient parallel to interface


Now, we focus on they-direction. We start with


L =
∂2


∂x2 +
∂
∂y


[ey ∂
∂y


], (4.11)


defined onΩ = (0, 2)×(0, 1). We are again interested in the largest eigenvalue. The domain
is covered by a31×31 grid, and decomposed into two equal subdomainsΩ1 = (0, 1)×(0, 1)
andΩ2 = (1, 2)× (0, 1).


The coefficientey in they-direction varies between1 ande, with average
∫ 1
0 eydy ≈


1.71. If our strategy (§4.3.1) is applied to this problem, then the coupling parametersα vary
between−2.39 and−2.93. We compare this local strategy with two other approaches:


• a preconditionerM with semi-localα’s obtained by first averaging a cluster of 5 suc-
cessive coefficients in the discretizedy-direction, withα based on an average, and
putting thisα on the 5 corresponding positions in the preconditioner,


• a preconditionerM with fixedα = −2.66. This is the coupling parameter that corre-
sponds to the average coefficient1.71. If we take thisα = −2.66 for all 0 < y < 1
then we apply some global optimization strategy: we approach the variable coefficient
problem with a constant coefficient problem.


The nonzero eigenvalues of the error propagation matrices corresponding to the precondi-
tioners of the three approaches are shown in Fig 4.3. We do not observe significant differ-
ences between the three approaches. Obviously, fluctuations in they-coefficient are not large
enough so that a more global strategy is also applicable.
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FIGURE 4.3. Nonzero eigenvalues of the error propagation matrix for the eigenvalue problem with modest
exponential coefficient in they-direction from§4.3.2.2. Shown are the eigenvalues for three different approaches in
the construction of the preconditioner: local optimized coupling parameters (‘◦’), semi-local coupling parameters
(‘ @A’) and a fixed coupling parameter (‘ +’). The eigenvalues are sorted (x-axis) by order of magnitude (y-axis).
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FIGURE 4.4. Nonzero eigenvalues of the error propagation matrix for the eigenvalue problem with highly
varying exponential coefficient in they-direction from§4.3.2.2. Shown are the eigenvalues for the local optimiza-
tion strategy withle (‘ ∗’) and the local optimization strategy withle +1 (‘ ◦’). The eigenvalues are sorted (x-axis)
by order of magnitude (y-axis).
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The last observation motivates us to blow up the coefficient in they-direction:


L =
∂2


∂x2 +
∂
∂y


[e4y ∂
∂y


]. (4.12)


(The (sub)domain(s) and (sub)grid(s) remain unchanged, we still focus on the largest eigen-
value.)


For0 ≤ y ≤ 1 the value ofe4y varies between1 ande4 ≈ 54.6 with average
∫ 1
0 e4ydy ≈


12.64. If we apply our local optimization strategy then the value of


le =
2
π


(ny + 1) arcsin


(


hy


2


√


−θe−4y


)


+ 1


(cf. §3.4.4 of chapter 3) is less than2 for 16 of the31 grid points in they-direction asθ ≈
−67.20. Since the modely = 1 corresponds to the desired eigenvector, this mode should
not be included for the optimization. Therefore, to avoid values lower than2, we do the
optimization forle + 1. Fig. 4.4 illustrates that indeed this results in a better spectrum for
I−M−1 BC .


With the optimization forle + 1, the computed coupling parameterα varies between
−3.64 and−23.78; the coupling parameter that corresponds to the average coefficient12.64
is equal to−5.45. We constructed also the preconditioners with semi-localα (again opti-
mization forle + 1) and a constantα = −5.45. The corresponding nonzero eigenvalues of
the error propagation matrix are shown in Fig. 4.5.
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FIGURE 4.5. Nonzero eigenvalues of the error propagation matrix for the eigenvalue problem with highly
varying exponential coefficient in they-direction from§4.3.2.2. Shown are the eigenvalues for three different ap-
proaches in the construction of the preconditioner: local optimized coupling parameters (‘◦’), semi-local coupling
parameters (‘@A’) and a fixed coupling parameter (‘ +’). The eigenvalues are sorted (x-axis) by order of magnitude
(y-axis).
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If we compare the three plots in this figure then we see that for the constantα the eigen-
values at positions6, 7, . . . , 29 and34, 35, . . . , 56 are somewhat less clustered near the ori-
gin. We believe that this is mainly due to the local phenomena in they-direction to which
the (semi-) local coupling parameters adapt better. On the other hand, for the constantα the
outliers at positions2, 3, 58, and59 seem to be a little bit better.


From this problem we learn that for the determination of coupling parameters one should
monitorle. This value may become too close to a critical value. Increasingle in such a case
may improve the spectrum of the error propagation matrix.
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4.3.2.3 Harmonic first and second order coefficients


For an operator with harmonic coefficients we adapted a linear problem from [8]. Because
we do not want interference of effects due to the discretization, we decreased the periods of
both second and first order coefficients and the magnitudes of the first order coefficients of
the original operator in [8]. In this way we obtain


L ≡ ∂
∂x


[(1 +
1
2


sin(3πx))
∂
∂x


]− (5 sin(2πx) cos(2πy))
∂
∂x


+


∂
∂y


[(1 +
1
2


sin(3πx) sin(3πy))
∂
∂y


] + (5 cos(2πx) sin(2πy))
∂
∂y


. (4.13)


The four largest eigenvalues of the operator in (4.13), after discretization (nx = ny = 31),
are


λ1 ≈ −23.109, λ2 ≈ −47.2073, λ3 ≈ −52.6884 and λ4 ≈ −73.7715 .


The domain is decomposed into two equal subdomains with physical sizes[0, 0.5] × [0, 1]
and[0.5, 1]× [0, 1].


First we considerθ equal to the largest eigenvalueλ1. If we apply the local optimization
strategy thenle varies between2 and3. This is what we expect: the modely = 1 corresponds
toλ1 and should not be taken into account. The nonzero eigenvalues of the error propagation
matrix I −M−1 BC for the resulting preconditionerM are shown in Fig. 4.6. Indeed, the
eigenvectors of the error propagation matrix are damped for all values ofly larger than1.


Next, we considerθ = λ4. For the operator withc = −70 in [8, §4.4] and [54,§5.5] it
was reported that this is a more difficult problem than withc = −20. This is because the
shift is more in the interior of the spectrum.


Inspection of the eigenvector corresponding toλ4 indicates that it globally behaves like
the eigenvector ofλ(2,2) (i.e. lx = 2 andly = 2) of the Laplace operator with constant coef-
ficients. Therefore, we expect that for this case alsoly = 2 should not be taken into account
for the local tuning. This is roughly confirmed by the computed values ofle: 3 < le < 5,
for 0 < y < 1. Fig. 4.7 shows the spectrum of the error propagation matrix. Note that, in
contrast to the others, which are real, the values at positions2, 3, 60, and61 on the horizontal
axis represent absolute values of two pairs of complex conjugate eigenvalues. They corre-
spond to the modesly = 2 andly = 3 that were not taken into account for the optimization.
But also with these modes included, the resulting spectrum is quite attractive for iteration
purposes.
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FIGURE 4.6. Nonzero eigenvalues of the error propagation matrix withθ = λ1 for the eigenvalue problem
with harmonic first and second order coefficients from§4.3.2.3. The eigenvalues are sorted (x-axis) by order of
magnitude (y-axis).
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FIGURE 4.7. Nonzero eigenvalues of the error propagation matrix withθ = λ4 for the eigenvalue problem
with harmonic first and second order coefficients from§4.3.2.3. The eigenvalues are sorted (x-axis) by order of
magnitude (y-axis).
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FIGURE 4.8. Nonzero eigenvalues of the error propagation matrix for the eigenvalue problem with large jump
in the coefficients from§4.3.2.4. Shown are the eigenvalues for the local optimization strategy withle (‘ @A’), the
local optimization strategy withle +1 (‘ ∗’) and the local optimization strategy withle +2 (‘ ◦’). The eigenvalues
are sorted (x-axis) by order of magnitude (y-axis).
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4.3.2.4 A large jump in coefficient


In practical situations one has often to deal with an operator that has a large jump in its coef-
ficients, as, for example, when modeling oil reservoirs (see, e.g. [60] where the coefficients
jump from1−7 to1) with high-permeability in the physical domain adjacent to locations with
low-permeability. We consider the following problem:


L ≡ ∂
∂x


[c(y)
∂
∂x


]+
∂
∂y


[c(y)
∂
∂y


] with c(y) =











1 for 0 ≤ y < 0.25 (region 1)
1000 for 0.25 ≤ y < 0.75 (region 2)


1 for 0.75 ≤ y ≤ 1 (region 3)
(4.14)


defined on[0, 2]× [0, 1]. We focus on the largest eigenvalue of this operator, the correspond-
ing eigenvector is the most smooth one among all eigenvectors. The domain is decomposed
into two equal subdomains with physical sizes[0, 1]× [0, 1] and[1, 2]× [0, 1].


Based on our strategy§4.3.1 we constructed a preconditioner. For the tuning also the
parameterle shows a sharp contrast on the different regions:le = 5.0040 on region 1 and 3
andle = 1.1258 on region 2. Althoughle = 1.1258 should not be included for the tuning
because this value is close to the modely = 1 that correponds to the desired eigenvector,
we will not skip this case here, in order to see what will happen. We propose to optimize for
le +1 instead ofle. In addition we also computed the coupling parameters locally forle +3,
just to see how critical this parameter is.
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Fig. 4.8 shows the computed nonzero eigenvalues of the error propagation matrix for
these three cases. From this we observe that 6 eigenvalues (at the positions1, 2, 3, 60, 61, 62
on the horizontal axis, they correspond toly = 1, 2, 3) can not be damped properly. The
modely = 1 corresponds to the desired eigenpair, hence the corresponding eigenvalues at
position1 and62 will be removed by the projections in the correction equation (see§3.5.2.2
of chapter 3). We believe that the large values of the eigenvalues at position2, 3, 60, and
61 are due to the discrepancy between the value ofle on region 2 and the other two regions.
Apart from these 6 outliers, the remaining eigenvalues seem not to be so good when opti-
mizing with le, as expected from the critical value ofle on region 2. From the eigenvalues at
positions4 and59 on the horizontal axis we see that tuning withle + 1 should be preferred
indeed.


4.4 Geometry


We now focus our attention to the geometry of the domain on which operator (4.9) is defined.
The model analysis in chapter 3 was performed for a rectangular domain that was decom-
posed into two subdomain. In§3.5.4 of chapter 3 it was shown that the resulting coupling
parameters can also be applied to decompositions with more than two subdomains in one
direction.


In this section we will consider the effects for domain decomposition in two directions.
We do this for an operator (4.9) with constant coefficients. First, we investigate in§4.4.1
whether an additional coupling mechanism is needed for subdomains that have only one
cornerpoint in common (cross coupling). Then we discuss in§4.4.2 how domains that are
a composition of rectangular subdomains can be treated. For nonrectangular compositions
some options are left for the determination of coupling parameters, these options are briefly
investigated in§4.4.2.1. We conclude this section with a more complicated domain, just to
illustrate the capabilities of the approach (§4.4.2.2).


4.4.1 Cross coupling


With a numerical experiment we want to investigate whether an additional cross coupling
is required between subdomains that have only one cornerpoint in common. For that pur-
pose we consider a preconditionerMC that is based on a decomposition of the domainΩ =
[0, 2]× [0, 2] in four subdomains in one direction (indicated by decomposition 1) and a pre-
conditioner that is based on a decomposition of the same domainΩ in two directions (de-
composition 2). For decomposition B the domain is split in thex-direction and in they-
direction, which results in4 subdomains separated by one interface in thex-direction and
one in they-direction. We compare the Jacobi-Davidson process for decomposition 1 with
the Jacobi-Davidson process for decomposition 2 without cross coupling. Such a coupling
could be worth further investigation if decomposition 1 would result in a significant faster
overall process.
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TABLE 4.1. Convergence history of Jacobi-Davidson when applied to the discretized (nx = ny = 63 top
table,nx = ny = 127 bottom table) eigenvalue problem of the two-dimensional (bx = by = 2) Laplace oper-
ator for approximate solutions to the correction equation obtained with4 right preconditioned GMRES iterations.
For the construction of the preconditioner with simple optimized coupling the domain is decomposed into four sub-
domains in two different ways: decomposition 1 in thex-direction only (px = 4 andpy = 1, on the left) and
decomposition 2 in both directions (px = 2 andpy = 2, on the right). For explanation see§4.4.1.


decomposition 1 decomposition 2
step θ − λ ‖r‖2 θ − λ ‖r‖2


nx = ny = 63
1 -6.50e-02 1.51e+00 -6.50e-02 1.51e+00
2 -2.43e-05 1.43e-01 -5.45e-06 6.40e-02
3 -2.64e-07 1.62e-02 -3.21e-07 2.53e-02
4 -2.84e-08 7.33e-03 -3.78e-09 2.59e-03
5 -6.82e-11 3.03e-04 -1.46e-10 5.84e-04
6 -2.20e-12 6.40e-05 -3.91e-13 3.57e-05
7 -3.38e-14 2.22e-06 -4.44e-14 1.68e-06
8 1.95e-14 7.44e-08 -1.14e-13 1.97e-07
9 -1.85e-13 1.77e-09 9.50e-14 1.71e-08
10 -9.95e-14 9.57e-11 -1.03e-13 2.16e-09


nx = ny = 127
1 -6.51e-02 1.54e+00 -6.51e-02 1.54e+00
2 -5.15e-05 5.06e-01 -1.82e-05 1.68e-01
3 -3.80e-06 1.48e-01 -6.82e-07 6.64e-02
4 -3.52e-08 1.30e-02 -7.63e-08 2.61e-02
5 -3.39e-10 1.58e-03 -7.24e-09 3.08e-03
6 -1.24e-11 1.91e-04 -2.67e-10 1.37e-03
7 -6.66e-12 2.03e-04 -4.71e-11 6.52e-04
8 -1.48e-12 7.23e-05 -8.24e-13 3.91e-05
9 -7.23e-13 5.69e-06 -7.28e-13 2.86e-06
10 -5.47e-13 5.32e-07 -3.98e-13 7.66e-07
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We aim at the largest eigenvalueλ and corresponding eigenvectorϕ̂ of the Laplace op-
erator onΩ with Dirichlet boundary condition̂ϕ = 0 on the external boundary∂Ω. The
external boundary is located at grid positionsi = 0, i = nx +1, j = 0, andj = ny +1 (left
picture in Fig. 4.10). The boundary conditions on these points do not lead to a contribution
to the discretized operator: the operator is defined on the “internal” pointsi = 1, . . . , nx


andj = 1, . . . , ny only. We run the experiment for two grids: one withnx = ny = 63 and
one withnx = ny = 127, the meshwidth is taken constant. The subgrids of decomposition
1 (px = 4, py = 1) have dimensionsnx1 = 15, nx2 = nx3 = nx4 = 16, andny = 63
(nx1 = 31, nx2 = nx3 = nx4 = 32, andny = 127, respectively). For decomposition 2
(px = 2, py = 2), the numbers arenx1 = ny1 = 31 (nx1 = ny1 = 63, respectively), and
nx2 = ny2 = 32 (nx2 = ny2 = 64, respectively).


The startvector of Jacobi-Davidson for both decompositions is the vector


{( jx


nx + 1
(1− jx


nx + 1
),


jy


ny + 1
(1− jy


ny + 1
)) | 1 ≤ jx ≤ nx, 1 ≤ jy ≤ ny}, (4.15)


Approximate solutions to the correction equation of Jacobi-Davidson are computed by 4
steps of right preconditioned GMRES (see§3.3.3 of chapter 3), compared to left precon-
ditioning this has the advantage of unknowns which are defined only on the grid points that
correspond to the·∼`


and·∼r
parts. The preconditioner based on domain decomposition is con-


structed with simple optimized coupling (§3.4.4 of chapter 3). For the determination of cou-
pling parameters on each interface we act as if there is no other interface. Both decomposi-
tions require about the same amount of computational work per Jacobi-Davidson step.


The experiment is performed inMATLAB 5.3.
Table 4.1 shows the results of the experiment. For both grids (nx = ny = 63 and


nx = ny = 127) we see that the Jacobi-Davidson processes for decomposition 1 and de-
composition 2 vary only a little in convergence behavior and it can not be concluded that the
process for decomposition 1 is significantly faster. For example, fornx = ny = 63 the error
in the eigenvalue and the norm of the residual at step 6 is smaller for decomposition B, for
nx = ny = 127 this happens at step 8. At other steps the situation is reversed. We believe
these fluctuations are attributed to the different decompositions.


From this experiment we conclude that for the computation of a global solution (i.e. a
solution that posseses global behavior all over the domainΩ) to the eigenvalue problem,
application of domain decomposition in two directions without cross coupling may lead to
a satisfactory preconditioner.
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4.4.2 Composition of rectangular subdomains


It seems that cross coupling is not necessary for a decomposition into two directions. Hence
we proceed with domains which are composed of rectangular subdomains. Here we shall
show how one can deal with these geometries.


FIGURE 4.9. SubdomainΩij and its internal/external boundaries (left picture), its splitting into four parts
for the determination of a startvector (middle picture), and the four types of components of this startvector on such
a part (right picture).
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Let Ωij be the interior of a rectangular area with number(i, j). With Γ`
ij ,Γ


r
ij , Γ


b
ij , and


Γt
ij , respectively, we denote the left, right, bottom, and top boundary ofΩij , respectively


(see left picture of Fig. 4.9). For such a boundary, sayΓ`
ij , two situations can occur:


1. Ωij has no adjacent subdomain on the left,


2. Ωij does have an adjacent subdomain on the left.


For situation 1, the values onΓ`
ij are external boundary values and these are imposed by the


eigenvalue problem itself. For situation 2, the values onΓ`
ij are internal boundary values and


we need to determine appropriate coupling parameters for the coupling between the subgrids
that coverΩij andΩi−1j .


DefineΩij ≡ Ωij ∪ Γ`
ij ∪ Γr


ij ∪ Γb
ij ∪ Γt


ij . Let I be the index set that contains the
coordinates(i, j) of the subdomainsΩij on which the operator is defined andΩij ∩Ωkl = ∅
for all (i, j), (k, l) ∈ I with i 6= k or/andj 6= l. The composition is then given byΩ =


⋃


(i,j)∈I


Ωij . With Ω we denote the interior ofΩ.


In contrast to the preceding experiments, the discretization of domainΩ will be different.
For a rectangularΩ this is illustrated in Fig. 4.10 (the left picture shows the old situation, the
right one the new situation). The reason for this change is that we can treat all subgrids that
cover the subdomains in a similar way now, the situation in the right picture in Fig. 4.10 can
be seen as a special case (a composition of only one subdomain:Ω = Ω11). For a subdomain
Ωij the values at the circles (o) in the right picture of Fig. 4.10 correspond to the·̃ components
of an enhanced vector in case of an internal boundary. Otherwise, for an external boundary,
the values at these gridpoints are eliminated by means of the external boundary conditions.
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FIGURE 4.10. Two different discretizations for a domainΩ. The left picture shows a discretization with ex-
tremal grid points (the circles(o)) located at the (external) boundary. In the right picture the discretization is such
that the boundary is between the extremal grid points (the circles(o)) and the first/last row/column of the internal
grid points (the bullets(•)). For both discretizations, the values at the circles(o) are eliminated in the discretized
operator by means of the external boundary conditions.
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Startvector
We also need a startvector for the Jacobi-Davidson method. This is described now for the
case of homogeneous Dirichlet conditions at the external boundary. For the determination of
the startvector we split each subdomainΩij in four equal parts:Ω`b


ij ,Ω
`t
ij ,Ω


rb
ij , andΩrt


ij (see
the middle picture of Fig. 4.9). We let the component of the startvector on such a part depend
on whether the operator is defined on the adjacent subdomains. Essentially, four types of
components exist, they are illustrated by plot I, II, III, and IV in the right picture of Fig. 4.9.
For example, there are three subdomains next toΩ`b


ij : Ωi−1j−1,Ωi−1j , andΩij−1. Since on
each adjacent subdomain the operator is defined (marked by “×”) or not (marked by “◦”),
eight configurations are possible:


Ωi−1j−1 × × × ◦ ◦ × ◦ ◦
Ωi−1j × × ◦ × ◦ ◦ ◦ ×
Ωij−1 × ◦ × ◦ × ◦ ◦ ×


plot I II II II II III III IV


Coupling parameters
Now, we formulate how the coupling parameters for an internal boundary ofΩij can be de-
termined. SupposeΩij has an internal boundaryΓr


ij . In order to be able to optimize the cou-
pling, information about the eigenvectors of the operator in they-direction is needed (§3.4
of chapter 3). Leti1 indicate the smallest, andi2 the largest integer withi1 ≤ i ≤ i2 such
that the operator is defined onΩkj for k = i1, . . . , i2. We determine the required informa-


tion from the operator in they-direction on the subcomposition
⋃


k=i1,...,i2


Ωkj by ignoring the


interfaces between the subdomainsΩkj . This is the same approach as in§4.4.1 for a rectan-
gular domainΩ. For a nonrectangular domainΩ some options are left, this will be discussed
next.
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FIGURE 4.11. Convergence history of Jacobi-Davidson when applied to the discretized eigenvalue problem
of the two-dimensional Laplace operator for approximate solutions to the correction equation obtained with4 right
preconditioned GMRES iterations. The operator is defined on an L-shaped domainΩ, here the long side has size
by = 4 and the short sidebx = 2. For the construction of the preconditioner with simple optimized couplingΩ is
decomposed into five equal subdomains of sizebxi = byj = 1. Each subdomain is covered by a20× 20 subgrid.
For explanation see§4.4.2.1.
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4.4.2.1 Nonrectangular compositions


For nonrectangular compositions of subdomains some options are left for the determination
of coupling parameters. We will illustrate and investigate this through some numerical ex-
periments.


The experiments are performed inMATLAB 6.0.


We start with an L-shaped domainΩ, and we want to compute the largest eigenvalue and
corresponding eigenvector (“theMATLAB logo”) of the Laplace operator onΩ. The domain
is a composition of 5 square subdomains of equal size (bxi = byj = 1), two subdomains in
thex-direction and four in they-direction. SubdomainΩ21 has no neighbouring subdomains
in they-direction, the subdomainsΩ12,Ω13, andΩ14 are on top ofΩ11. Each subdomain is
covered by a20× 20 subgrid.


We determine the coupling parameters at the interfaces as in§4.4.2. We do this for the
simple optimized coupling. Thenα` of Ω11 is determined by considering the Laplace oper-
ator in they-direction onΩ11 ∪ Ω12 ∪ Ω13 ∪ Ω14. Forαr of Ω21 this is done onΩ21 only.
Hence, the values ofα` andαr differ. We wonder how important these differences are and
how they affect the quality of the preconditioner. To investigate this we compare the Jacobi-
Davidson processes for
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• option 1:α` andαr are determined independently as described,


• option 2:α` has the same value asαr, and


• option 3:αr has the same value asα`.


The construction of the startvector for Jacobi-Davidson is shown in§4.4.2. The value of the
coupling parameter shows a significant difference for the three options. Approximate solu-
tions to the correction equation are obtained from 4 steps with right preconditioned GMRES.


Fig. 4.11 shows the convergence history of Jacobi-Davidson for these three options. The
first impression is that option 2 should be preferred. But if we study the convergence plots
after iteration8, when convergence starts, then it can be observed that the plots are almost
parallel. Because of this we expect that the pre-convergence phase of the process for option
2 is, accidentally, somewhat shorter. To confirm this we repeated the experiment for another
composition.


FIGURE 4.12. Eigenvector of the discretized eigenvalue problem of the two-dimensional Laplace operator
on a T-shaped domain. See for explanation§4.4.2.1.


The domainΩ is now T-shaped, the long side ofΩ has sizebx = 8 and the short side
by = 5. It is a composition of22 square subdomains of equal size (bxi = byj = 1). Each
subdomain is covered by a10 × 10 subgrid. Again we aim at the largest eigenvalue and
corresponding eigenvector (see Fig. 4.12) of the Laplace operator onΩ. For the correction
equation also 4 steps with right preconditioned GMRES are done. We consider the three
options for the coupling parametersαb andαt at the interface that split the into


and .
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The convergence history of the Jacobi-Davidson processes for the three options on this
domain are plotted in Fig. 4.13. Now, fast convergence starts immediately after step1. The
three options forα` andαr show almost the same overall process. We conclude that also
for nonrectangular compositions the determination of coupling parameters as formulated in
§4.4.2, may lead to a good preconditioner.


FIGURE 4.13. Convergence history of Jacobi-Davidson when applied to the discretized eigenvalue problem of
the two-dimensional Laplace operator for approximate solutions to the correction equation obtained with4 right
preconditioned GMRES iterations. The operator is defined on a T-shaped domainΩ, here the long side has size
bx = 8 and the short sideby = 5. For the construction of the preconditioner with simple optimized couplingΩ is
decomposed into22 equal subdomains of sizebxi = byj . Each subdomain is covered by a10× 10 subgrid. For
explanation see§4.4.2.1.
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4.4.2.2 More complicated domains


Our final experiment is intended to illustrate that with a combination of Jacobi-Davidson, and
the preconditioner based on domain decomposition, eigenvalues and corresponding eigen-
vectors can be computed of operators that are defined on more complicated geometries. For
that purpose we consider the Laplace operator on a square domain (bx = by = 17). The
domain is a composition of square subdomains of equal size (bxi = byj = 1). We write the
initials and age in years of Utrecht University on the domain by excluding the subdomains
that correspond to these parts from the domain. Each subdomain is covered by a10×10 sub-
grid. With Jacobi-Davidson we want to compute the largest eigenvalue and corresponding
eigenvector. The construction of the startvector is described in§4.4.2. Approximate solu-
tions to the correction equation are computed with 10 steps of right preconditioned GMRES.
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TABLE 4.2. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem of the
two-dimensional Laplace operator on a more complicated domain for approximate solutions to the correction equa-
tion obtained with 10 right preconditioned GMRES iterations. The preconditioner is based on domain decomposi-
tion with simple optimized coupling. For explanation see§4.4.2.2.


step θ ‖r‖2 step θ ‖r‖2
1 -5.538666263730 2.17e+01 14 -0.9918317516109 6.19e-04
2 -1.681336714181 9.44e+00 15 -0.9918311440008 1.13e-03
3 -1.023404498995 9.27e-01 16 -0.9918296679279 5.46e-04
4 -0.9954697880199 3.30e-01 17 -0.9918288842076 5.85e-04
5 -0.9927244240975 1.41e-01 18 -0.9918283703891 1.94e-04
6 -0.9925038578219 2.19e-02 19 -0.9918283246088 2.88e-05
7 -0.9923720853492 7.60e-02 20 -0.9918283045227 1.68e-05
8 -0.9920896120028 4.21e-02 21 -0.9918283015561 1.63e-06
9 -0.9920104205556 2.10e-02 22 -0.9918283013716 2.78e-07
10 -0.9919586304587 2.41e-02 23 -0.9918283013527 4.51e-08
11 -0.9918967786952 1.96e-02 24 -0.9918283013551 3.95e-09
12 -0.9918336138825 1.47e-02 25 -0.9918283013552 2.86e-10
13 -0.9918323113539 1.25e-03


The preconditioner is based on domain decomposition with simple optimized coupling, with
the determination of the coupling parameters as in§4.4.2. The experiment is performed in
MATLAB 6.0.


Table 4.2 contains the results of the experiment. Displayed are the first 13 digits of the
approximate eigenvalue and the residual norm of the approximate eigenpair at each Jacobi-
Davidson step. The approximate eigenvector at step 25 is shown in Fig. 4.14.


4.5 Conclusions


In this chapter we considered two major practical extensions of the domain decomposition
approach for the Jacobi-Davidson method as proposed in chapter 3.


First, we outlined a strategy for the case of a PDE with variable coefficients. The strategy
is based on the assumption that variable coefficients can be approximated locally by frozen
coefficients. Numerical experiments showed that this strategy leads to useful precondition-
ers for a number of typical PDE’s.


Secondly, we extended the domain decomposition approach to more complicated geome-
tries. For that purpose, a sophisticated startvector for the Jacobi-Davidson method had to be
constructed. Also, the strategy for the determination of coupling parameters was generalized
by taking into account the geometry. We illustrated its effectiveness numerically for some
different geometries.
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FIGURE 4.14. Eigenvector of the discretized eigenvalue problem of the two-dimensional Laplace operator
on a more complicated domain. See for explanation§4.4.2.2.







Chapter 5


Domain decomposition on
different levels of the
Jacobi-Davidson method


Abstract


Most computational work of Jacobi-Davidson [46], an iterative method suitable
for computing solutions of large dimensional eigenvalue problems, is due to a
so-called correction equation on the intermediate level. In chapter 3 an approach
based on domain decomposition is proposed to reduce the wall clock time and lo-
cal memory requirements for the computation of (approximate) solutions to the
correction equation. This chapter discusses the aspect that the domain decompo-
sition approach can also be applied on the highest level of the Jacobi-Davidson
method. Numerical experiments show that for large scale eigenvalue problems
this aspect is nontrivial.


Keywords: Eigenvalue problems, domain decomposition, Jacobi-
Davidson, Schwarz method, nonoverlapping, iterative methods.
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5.1 Introduction


For the computation of solutions to a large scale linear eigenvalue problem several iterative
methods exist. Amongst them, the Jacobi-Davidson method [46] has some interesting and
useful properties.


One essential property is that it allows flexibility in the so-called correction equation.
At each iteration Jacobi-Davidson generates an (approximate) solution of this equation: the
correction vector. Special care is also needed: most computational work of the method arises
from the correction equation. It involves a linear system with size equal to that of the original
eigenvalue problem and therefore the incorporation of a good preconditioner is crucial, when
solving the correction equation iteratively.


For the solution of large linear systems originating from the discretization of partial dif-
ferential equations, domain decomposition methods proved to be a successful tool. However,
the linear system that is described by the correction equation may be highly indefinite and
is given in an unusual manner so that the application of a domain decomposition method
needs special attention. In chapter 3 a preconditioner based on domain decomposition for
the correction equation is constructed for advection-diffusion type of eigenvalue problems.


This chapter discusses the aspect that Jacobi-Davidson is a nested iterative method if the
correction equation is solved approximately with an iterative method. Before the specific
preconditioner can be applied to a linear system, the system needs first to be extended to a
so-called enhanced system. For the use within Jacobi-Davidson an enhancement of the linear
system defined by the correction equation is than obvious. But other choices are possible as
well, for example enhancement at the level of the eigenvalue problem itself. These choices
are discussed here. For approximate solutions of the correction equation the differences be-
tween them will turn out to be nontrivial.


This chapter is organized as follows. First§5.2 summarizes the domain decomposition
technique: enhancements are introduced and the preconditioner is described. Then§5.3 high-
lights the different levels of enhancement in the Jacobi-Davidson method. In§5.4 it will
be shown how for each level the preconditioner is incorporated and the differences are dis-
cussed. Section§5.5 concludes with some illustrative numerical examples, also to indicate
the importance of the differences for the numerical treatment of large scale eigenvalue prob-
lems.


5.2 A nonoverlapping Schwarz method


This section briefly outlines the domain decomposition technique, a nonoverlapping additive
Schwarz method which is based on previous work by Tang [57] and Tan & Borsboom [55,
56].


We will describe enhancements of matrices and vectors in an algebraic way. Then it is
shown how to apply these enhancements to linear systems and (standard) eigenvalue prob-
lems. We conclude this section with a recapitulation of the construction of preconditioners
for these enhanced systems. This allows also for a physical/geometric interpretation.


For simplicity, but without loss of generality, only the two subdomain case is considered.
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5.2.1 Enhancement of matrices and vectors


Suppose that the matrixB has been partitioned as follows:














B11 B1` B1r 0
B`1 B`` B`r 0
0 Br` Brr Br2


0 B2` B2r B22














.


Note that the partsB12,B`2,Br1, andB21 are zero. This is a typical situation that will be
motivated in§5.2.3. TheenhancementBC for B is defined by


BC ≡





























B11 B1` B1r 0 0 0
B`1 B`` B`r 0 0 0
0 C`` C`r −C`` −C`r 0
0 −Cr` −Crr Cr` Crr 0
0 0 0 Br` Brr Br2


0 0 0 B2` B2r B22





























. (5.1)


The submatricesC``, C`r, Cr` andCrr define thecouplingmatrix C ≡
[


C`` −C`r


−Cr` Crr


]


.


Except forI0, the enhancement of the identity matrixI with zero coupling matrix, in the
following all enhanced matrices will have a nonsingular couplingC.
For a vectory, partitioned as


(


y T
1 , y T


` , y T
r , yT


2


)T
, three types of enhancement are defined:


• thezero enhancementy0 ≡ (y T
1 , y T


` , 0T , 0T , y T
r , y T


2 )T ,


• theunbalanced enhancementy∼ ≡ (y T
1 , y T


` , ỹ T
r , ỹ T


` , y T
r , y T


2 )T , and


• thebalanced enhancementy ≡ (y T
1 , y T


` , y T
r , y T


` , y T
r , y T


2 )T .


The other way around, given one of these enhancements, sayy∼, therestrictionof y∼ is defined


byy ≡
(


y T
1 , y T


` , y T
r , yT


2


)T
, that is by just skipping thẽ·r and̃·` parts. The partsy`, yr, ỹ`,


andỹr have equal size. The values of these parts are generated by an iteration process that
will be discussed in§5.2.3.


5.2.2 Enhancement of linear systems of equations


With the enhancements introduced in§5.2.1, a linear system


By = d (5.2)


can be enhanced to
BC y∼ = d0. (5.3)







Different levels 114


It is easy to see thaty is a solution of (5.2) if and only ify is a solution of (5.3):BC y =
(By)0.


For a standard eigenvalue problem


Ax = λx, (5.4)


one should be aware of the fact that both sides contain the unknown vectorx. Therefore,
(5.4) is rewritten as


(A− λ I ) x = 0. (5.5)


If an eigenvalueλ is already known then this is a linear equation that describes the corre-
sponding eigenvectorx. Therefore, we call (5.5) theeigenvector equation. Similar to the
enhancement of a linear system, equation (5.5) is enhanced to


(A− λ I )C x∼ = (AC − λ I0 ) x∼ = 0. (5.6)


It can easily be verified that, given someλ, x is a solution of (5.5) if and only ifx is a solution
of (5.6).


Another option is an enhancement of the the eigenvalue problem (5.4) itself:


AC x∼ = λ I0 x∼. (5.7)


Note that here, artificially, an extra eigenvalue∞ of multiplicity dim C is created. We can
consider (5.7) as a generalized eigenvalue problem and use some numerical method for gen-
eralized eigenvalue problems. In case of the Jacobi-Davidson method, the numerical exam-
ple from§5.5.1 will show that such ablack box approachis not so successful.


5.2.3 Construction of the preconditioner


The motivation for the enhancements in§5.2.1 and§5.2.2 is the possibility to precondition
an enhanced system by performing accurate solves of subsystems and to tune the coupling
between those subsystems for improved speed of convergence of the iterative solver in which
the preconditioner is incorporated.


For the enhanced linear system (5.3), the two subsystems are described by the boxed
parts in (5.1). LetMC denote this part ofBC . The preconditioned enhanced system


M−1
C BC y∼ = M−1


C d0 (5.8)


is solved by a convenient iterative method. The key observation is that the iterates of such
a method are (linear combinations of) powers ofM−1


C BC times a vector. This motivates
the construction of a couplingC, such that the error induced by the matrix splittingBC =
MC −N is damped out by higher powers ofM−1


C BC = I−M−1
C N applied toM−1


C d0.
Such a tuning ofC requires knowledge of the (physical) equations from whichB arises via
discretization. The subsystems described byMC represent a discretization of the (physical)
equations on the subdomains andC can be interpreted as discretized coupling equations be-
tween the subdomains. For such a typical discretization only a small number of unknowns
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couple with unknowns from different subdomains. In§5.2.1 these unknowns are indicated
by ` andr (the unknowns at theleft andright respectively from the internal interface be-
tween the subdomains). The partsỹ` andỹr respectively are virtual copies of the partsy` and
yr respectively. For the iteratesy∼


(i) generated by the iterative method the values of these


parts will not be the same in general, but if convergence takes place thenỹ(i)
` → y(i)


` and


ỹ(i)
r → y(i)


r , and thereforey∼
(i) → y(i).


Most of the unknowns are coupled only to unknowns from the same subdomain (in§5.2.1,
for instance, this internal coupling is described byB11). This also explains thatB12,B`2,Br1,
andB21 are zero in typical situations of interest.


For enhanced linear systems of the form (5.3), tuning of the coupling has been proposed
by Tan and Borsboom [55, 56]. The construction of suitable couplings for enhancements of
linear correction equations occurring in the Jacobi-Davidson method, for a model eigenvalue
problem, was described in chapter 3. In the next sections we will show that such a coupling
can also be used on the highest level of the Jacobi-Davidson method, namely by enhancing
the eigenvector equation.


5.3 Solution of the eigenvalue problem


5.3.1 The Jacobi-Davidson method


For an eigenvalue problem the Jacobi-Davidson method [46] computes iteratively a solution.
Here, for simplicity, the standard eigenvalue problem (5.4) is considered. The ingredients of
each iteration are:


Extract an approximate eigenpair(θ,u) from a search subspaceV via aRayleigh-Ritzprin-
ciple.
TheRayleighpart projectsA onV by constructing thematrix Rayleigh quotientof V
or interaction matrix


H ≡ V∗AV.


TheRitzpart solves the projected eigenvalue problem


H s = θ s, (5.9)


selects aRitz valueθ and computes the correspondingRitz vectoru ≡ V s and residual
r ≡ (A− θ I ) u.


Correct the approximate eigenvectoru.
Thecorrection vectort is computed from thecorrection equation


t ⊥ u, P (A− θ I ) Pt = −r with P ≡ I− uu∗


u∗u
. (5.10)


Expand the search subspaceV with the correction vectort.
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FIGURE 5.1. Three levels in the Jacobi-Davidson method suitable for enhancement.


eigenvector equation:
solve (approximately)(A − λ I ) x = 0


correction equation:
solve (approximately)P (A − θ I )Pt = −r


precondition equation:
solve (approximately)My = z


3


2


1


A − θ I ≈ A − λ I


M ≈ A − θ I


.........................................................................................................................................................................................�H
.........................................................................................................................................................................................�H


For not too low dimensional problems, most computational work of Jacobi-Davidson is
in the second ingredient. Convergence of the method depends strongly on the accuracy of
(approximate) solutions of the correction equation. In many practical cases exact solution of
the correction equation is not feasible because of time and/or memory constraints. Then one
has to rely on approximate solutions obtained from some iterative method for linear systems.
For the convergence of such a method a good preconditioner is highly desirable.


Three levels of the Jacobi-Davidson method are distinguished (indicated by numbers in
Fig. 5.1): the eigenvector equation that describes the eigenvector corresponding to an eigen-
valueλ on the highest level, the correction equation that describes the correction vector on
the intermediate level, and theprecondition equationthat describes preconditioning on the
lowest level. The different levels are related by the involved linear operators (indicated by
arrows in Fig. 5.1): as the exact eigenvalueλ in the operatorA− λ I is not known before-
hand, it is replaced by an approximationθ, which leads to the operatorA−θ I. This operator
is replaced by a preconditionerM with which it is cheaper to solve systems.


The relationships between the levels are the motivation for the different levels of en-
hancement that will be considered in§5.3.2. If solutions to the correction equation are com-
puted with a preconditioned iterative solver then Jacobi-Davidson consists of two nested iter-
ative solvers. In the innerloop a search subspace for the (approximate) solution of the correc-
tion equation is built up by powers ofM−1 (A− θ I ) for fixedθ. In the outerloop a search
subspace for the (approximate) solution of the eigenvalue problem is built up by powers of
M−1 (A− θ I ) for variableθ. As θ varies slight in succeeding outer iterations, one may
take advantage of the nesting for the special preconditioner of§5.2.3 as we will show in§5.4.
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5.3.2 Different levels of enhancement


All three levels from§5.3.1 are suitable for the enhancements as introduced in§5.2. There-
fore we consider the following enhancements:


• enhanced precondition equation


• enhanced correction equation


• enhanced eigenvector equation


First, we will show§5.3.2.1 that these three enhancements lead to different correction equa-
tions. Then, in§5.3.2.2, we will discuss how the two other ingredients may be adapted to fit
the corresponding correction equation in the Jacobi-Davidson method.


5.3.2.1 Correction equation


Enhanced precondition equation
A correctiont is computed from the correction equation (5.10) for the standard eigen-
value problem (5.4).


Enhanced correction equation
A correctiont∼ is computed from the enhancement of correction equation (5.10) (§3.3.2
of chapter 3):


t∼ ⊥ u0, P (AC − θ I0 ) Pt∼ = −r0 with P ≡ I− u0u∗0
u∗0u0


, (5.11)


u0 the zero enhancement ofu andr0 the zero enhancement of the residualr ≡ (A− θ I ) u.


Note that asr0 = (AC − θ I0 ) u, from equation (5.11) also a correctiont∼ for a bal-
anced enhancedu can be computed.


Enhanced eigenvector equation
A correctiont∼ is computed from the correction equation for the enhancement (5.6) of
the eigenvector equation (5.5):


t∼ ⊥ u0, P (AC − θ I0 ) Pt∼ = −Pr∼ with P ≡ I− u0u∗0
u∗0u0


, (5.12)


u0 the zero enhancement of the restriction of the unbalancedu∼ and residualr∼ ≡ (AC − θ I0 )u∼.
Note that this residual also measures the errorsu` − ũ` andur − ũr.


Equation (5.12) is derived now. It is a straightforward “generalization” of the deriva-
tion of the correction equation for (5.4) via some first order correction approach [46].1


1For this ingredient of Jacobi-Davidson, where the value of the approximate eigenvalueθ is known, the correc-
tion equation (5.12) can also be obtained by considering the enhanced eigenvector equation (5.6) as an instance of
the “generalized eigenvalue problem” (5.7) [44, 26]. However, the first ingredient, the construction of an interaction
matrix and determination of a new Ritz pair is with respect to the original eigenvalue problem (5.4).
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Suppose we have computed a pair(θ,u) that approximates some eigenpair(λ,x).
Furthermore, also an unbalanced enhancementu∼ of u is available from the informa-
tion collected so far. We want to compute a correctiont∼ to u∼, such thatx = u∼ + t∼.
Herex is the balanced enhancement ofx. The enhanced eigenvector equation (5.6)
yields


(AC − λ I0 ) (u∼+ t∼ ) = 0.


We rewrite this as follows:


(AC − θ I0 ) t∼ = −r∼+ (λ− θ)u0 + (λ− θ) t0.


Hereu0 = I0 u∼ andt0 = I0 t∼. Forθ close toλ andu∼ close tox the term(λ − θ) t0
is of second order. This contribution is neglected:


(AC − θ I0 ) t∼ = −r∼+ (λ− θ)u0. (5.13)


The differenceλ− θ on the right hand side of (5.13) is not known. This contribution
disappears by projecting on the space orthogonal tou0:


P (AC − θ I0 ) t∼ = −Pr∼ with P ≡ I− u0u∗0
u∗0u0


. (5.14)


If convergence takes place, that is ifθ converges to an eigenvalueλ, then the operator
AC − θ I0 in (5.14) becomes singular. Because of this we can not compute proper
solutions for (5.14). We repair this by also restricting the domain of the operatorAC−
θ I0 to the space orthogonal tou0. Then, one arrives at (5.12), the correction equation
for the enhanced eigenvector equation (5.6). Observe that on the right-hand side there
is also a projection where in the correction equations (5.10) and (5.11) there is not.
This is becauser∼ is not perpendicular tou0 in general.


5.3.2.2 Incorporation in the Jacobi-Davidson method


For the incorporation of the three different enhanced equations of§5.3.2 we have to specify
at which stage in the Jacobi-Davidson method vectors need to be enhanced and restricted.
We discuss this for each enhanced equation here.


Enhanced precondition equation
Here, (approximate) solutions to the correction equation of Jacobi-Davidson are com-
puted with an iterative method in combination with a preconditioner. Preconditioning
consists of the following steps: enhance a vector, multiply the enhanced vector with
the preconditionerM−1


C and restrict the result. All other ingredients remain the same
as in§5.3.1.


Enhanced correction equation
In this case the correction equation (5.10) of Jacobi-Davidson is enhanced. For that
purpose the operatorA− θ I is enhanced toAC − θ I0 and the vectorsu andr to u0


andr0 respectively.
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It is easy to see that if the enhanced correction equation (5.11) is solved exactly then
the solution is balanced:t and the restrictiont of this t is also the unique solution of
the original correction equation (5.10). However, if the enhanced correction equation
(5.11) is solved only approximately then the solutiont∼ is unbalanced in general.


For the next outeriteration we restrictt∼ tot and expandV with thist. Jacobi-Davidson
continues with the Rayleigh-Ritz principle of§5.3.1.


Enhanced eigenvector equation
For this situation also the vectors on the highest level of the eigenvector equation are
enhanced. During the Jacobi-Davidson process an enhanced subspaceV∼ is built up.
A new approximate eigenpair(θ,u) for the original eigenvalue problem (5.4) is com-
puted with respect to the restricted subspaceV of V∼. The enhanced vectoru∼ ≡ V∼ s
corresponding tou ≡ V s with residualr∼ ≡ (AC − θ I0)u∼ is formed. We take this
unbalanced enhancementu∼ as it contains more information than the balanced enhance-
mentu. For approximate solutions of the correction equation (5.12) this will turn out
to be more efficient for the overall process (see§5.4 and§5.5).


Foru∼ = u the residualr∼ equalsr0 and is perpendicular tou0. If so then it is easy to
see that the correction equations (5.12) and (5.11) are identical. When solved exactly
both correction equations yield the same balanced correction vectort.


In general the solution of (5.12) is unbalanced. As new approximate solutions to the
original eigenvalue problem (5.4) are extracted fromV we need an orthonormalV.
Therefore we orthogonalizet∼ with respect to the semi inner product defined by


y∼
∗ I0 z∼ for y∼, z∼ ∈ V∼. (5.15)


ThenV∼ is expanded.


Overall we conclude the following: if the three different Jacobi-Davidson processes are started
with the same search subspaceV where the enhancement ofV for the process with enhanced
eigenvector equation is balanced and if the correction equations are solved exactly, then the
three processes are equivalent.


This conclusion is of theoretical interest only. As already remarked in§5.2.3, the en-
hancements are introduced in order to accomodate a preconditioner based on domain de-
composition. In practice, approximate solutions to the correction equation are computed by
means of such a preconditionerMC ≈ AC−θ I0. The next section discusses precondition-
ing for the different enhanced equations.
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5.4 Preconditioning


Now, at this point, we are able to describe the application of the preconditioner based on
domain decomposition for the two highest levels of enhancement in the Jacobi-Davidson
method.


The Jacobi-Davidson process with the lowest level of enhancement, that is the process
with enhanced precondition equation will not be considered furthermore. The reason why is
that, if only the precondition equation is enhanced, then for an effective preconditionerMC


this requires knowledge of the value of the correction vector on the (internal) subdomain
boundaries. As the correction vector is the unknown vector, that is not practical.
The two other processes, with enhancement on the intermediate and highest level, however,
first compute an approximate solution for the correction equation in an enhanced subspace
built by powers ofM−1


C (AC − θ I0 ) times a vector. Then an effective preconditioner can
be constructed (§5.2.3).


For the enhanced correction equation it was shown in§3.3.2 of chapter 3 how to incor-
porate a preconditioner in the correction equation (5.11). In order to accomodate also for an
unbalancedu∼, we will discuss here how a preconditioner can be incorporated in correction
equation (5.12). Similar to [46,§4.1] and [47,§3.1.1] first a 1-step approximation is con-
sidered in§5.4.1. This makes it easier to emphasize the difference by means of an example
in §5.4.2. It also facilitates the interpretation of the approximate solution of (5.12) with a
preconditioned Krylov method later on in§5.4.3.


5.4.1 1-step approximation


For the Jacobi-Davidson process with enhanced correction equation the 1-step approxima-
tion is given by (cf. step 1 in§3.3.3 of chapter 3):


t∼
(0) = −P′M−1


C r with P′ ≡ I− M−1
C u0u∗0


u∗0M
−1
C u0


. (5.16)


By premultiplying from the left with a preconditionerMC ≈ AC − θ I0 and imposing that
the approximate correction vector is orthogonal tou0, equation (5.13) yields a 1-step ap-
proximation for the Jacobi-Davidson process with enhanced eigenvector equation:


t∼
(0) = −P′M−1


C r∼ with P′ ≡ I− M−1
C u0u∗0


u∗0M
−1
C u0


. (5.17)


The only difference between (5.16) and (5.17) is the residual: foru∼ 6= u the residualsr∼ and
r are not equal. In that case the solutions of (5.16) and (5.17) may differ. The appearance of
an unbalancedu∼ 6= u in the process with enhanced eigenvector equation is very likely when
the correction equation is not solved exactly. This is illustrated by the example in§5.4.2. It
shows also why it may be attractive to allow for an unbalanced search subspace for Jacobi-
Davidson as in the process with an enhanced eigenvector equation.
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5.4.2 Example


Suppose that the process with the enhanced correction equation is started withV(0) ≡ u(0)


and the process with the enhanced eigenvector equation withV∼
(0) ≡ u(0), whereu(0) is the


balanced enhancementu(0) of u(0). Then we have that


θ0 =
(u(0))∗Au(0)


(u(0))∗u(0) , (5.18)


for both processes. For simplicity of notation, letBC0 ≡ AC0 − θ0 I0 with couplingC0.
Given some preconditionerMC0 ≈ BC0 , the 1-step approximations (5.16) and (5.17) yield
the same approximate correction vectort∼


(0) = −P(0) M−1
C0


BC0 u(0), with


P(0) ≡ I−
M−1


C0
u(0)


0 (u(0)
0 )∗


(u(0)
0 )∗M−1


C0
u(0)


0


.


Note that in generalt∼
(0) is unbalanced. The process with the enhanced correction equation


deals with this unbalanced vectort∼
(0) by restricting it tot(0). With this vector the search


subspace is expanded toV(1) ≡ span
(


u(0), t(0)
)


. The new search subspaceV∼
(1) of the


process with the enhanced eigenvector equation is spanned byu(0) andt∼
(0).


The next outer iteration a new approximate eigenpair is determined. As the restriction of
V∼


(1) is equal toV(1), the interaction matrices of the two processes are identical. Because of
this, both processes determine the same new approximate eigenvalue, the Ritz valueθ1. Let
the corresponding Ritz vector beu(1). The process with the enhanced correction equation
enhances this vector into a balanced vectoru(1) that can be written as


u(1) = αu(0) + β t(0)


for someα andβ. These coefficientsα andβ also describe the unbalanced enhanced Ritz
vectoru∼


(1) of the process with enhanced eigenvector equation:


u∼
(1) = αu(0) + β t∼


(0),


so, for this case, an approximate solution of the correction equation leads to an unbalanced
u∼ 6= u.


If one proceeds, the process with enhanced correction equation computes a new approx-
imate correction vector equal to


−P(1) M−1
C1


BC1 u(1) = −αP(1) M−1
C1


BC1 u(0) − β P(1) M−1
C1


BC1t
(0). (5.19)


The new approximate correction vector for the other process can be written as an operator
applied to the start vectoru(0):


−P(1) M−1
C1


BC1 u∼
(1) = −αP(1) M−1


C1
BC1 u(0) − β P(1) M−1


C1
BC1 t∼


(0)


=
(


−αP(1) M−1
C1


BC1 + β P(1) M−1
C)1 BC1 P(0) M−1


C0
BC0


)


u(0). (5.20)
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We consider a couplingCi that is tuned as in chapter 3. As already remarked in§5.2.3, such
a coupling damps out errors by increasing powers ofM−1


Ci
BCi . Furthermore, ifθ1 is close


to θ0, which is the case when Jacobi-Davidson is in the region of convergence, then for the
optimized coupling,C1 is close toC0 and, as a result,BC1 ≈ BC0 andMC1 ≈ MC0 .
Because of this, in equation (5.20) remaining error components from the previous outer it-
eration are damped in the next outer iteration. In equation (5.19), however, the damping of
error components in the next outer iteration is disturbed.


From this example we learn that, if approximate solutions for the correction equation
are obtained from a 1-step approximation, then we may expect that the process with the en-
hanced eigenvector equation converges faster than the process with the enhanced correction
equation.


5.4.3 Higher order approximations


From§5.3.2.2 we know that for exact solutions of the correction equation the processes with
enhanced correction equation and enhanced eigenvector equation are identical. The exam-
ple of§5.4.2 resulted in our expectation that for 1-step approximations the process with en-
hanced eigenvector equation converges faster than the process with enhanced correction equa-
tion. The question remains how the two processes are related for higher order approximate
solutions of the correction equation.


The process with enhanced correction equation computes such a solution with a precon-
ditioned Krylov method. For that purpose it was shown in§3.3.2 of chapter 3 how to incor-
porate a preconditioner in the correction equation (5.11):


P′M−1
C (AC − θ I0 ) P′ t∼ = P′M−1 r with P′ ≡ I− M−1


C u0u∗0
u∗0M


−1
C u0


. (5.21)


The situation for the process with enhanced eigenvector equation is considered now.
A higher order approximation for a solution of (5.12) can be obtained by considering not


only t∼
(0) from (5.17) but also terms defined by the sequence


z∼
(i) = P′M−1


C (AC − θ I0 ) z∼
(i−1) with P′ ≡ I− M−1


C u0u∗0
u∗0M


−1
C u0


andz∼
(0) = t∼


(0) for i = 1, 2, . . . (cf. [47, §3.1.1]). These vectors span the Krylov subspace


Km(P′M−1
C (AC − θ I0 ) ,P′M−1


C r∼). Note that the couplingC in §5.2.3 is chosen such
that (most) error components induced by the splittingAC−θ I0 = MC−NC are damped out
by increasing powers ofM−1


C (AC − θ I0 ). So for largerm a better approximationt∼
(m) to


the solution of (5.12) can be extracted from the Krylov subspace, for instance, with GMRES
which computes the solution inKm that has a minimal residual iǹ2-norm.


In fact, in this way, with a Krylov method an approximate solutiont∼
(m) is computed to


the preconditioned correction equation


P′M−1
C (AC − θ I0 ) P′ t∼ = P′M−1


C r∼ with P′ ≡ I− M−1
C u0u∗0


u∗0M
−1
C u0


. (5.22)
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Again, it can be shown that foru∼ = u the preconditioned correction equations (5.21) and
(5.22) are identical.


As for higher order solutions of the correction equations (5.21) and (5.22) the error com-
ponents are damped more, it is to be expected that the difference between the two processes,
as illustrated in§5.4.2, becomes less significant: damping due to the outerloop in the process
with enhanced eigenvector equation then has a smaller contribution to the overall process.
This expectation is verified numerically in the next section.


5.5 Numerical experiments


The numerical experiments presented in this section are intended to illustrate how the process
with enhanced correction equation and the process with enhanced eigenvector equation are
related for approximate solutions of the correction equation. In addition, the first experiment
of §5.5.1 also includes the black box approach, where we apply the Jacobi-Davidson QZ
(JDQZ) method [44, 26] to the enhanced eigenvalue problem (5.7) (see§5.2.2). For approx-
imate solutions of the correction equation, we expect (§5.4) that the process with enhanced
eigenvector equation converges faster, we will verify this in§5.5.2. Then,§5.5.3 will show
how one may take advantage of this knowledge when an eigenvalue problem is solved by
massively parallel computations.


In all experiments, Jacobi-Davidson is applied to the discretized eigenvalue problem for
the two dimensional Laplace operator on a domainΩ. The domain is covered by a grid of
uniform mesh size and the matrixA in (5.4) represents the discretization of the Laplace op-
erator via central differences. Our goal is the eigenvalue of smallest absolute value and the
corresponding eigenvector. The startvector of Jacobi-Davidson is the parabola shaped vector
(3.57) from§3.5.1 in chapter 3.


For the construction of the preconditionerMC , Ω is decomposed into subdomains. Each
subdomain is covered by a subgrid. The enhancements from§5.2 consists of adding an extra
row of gridpoints at all four borders of each subgrid, the function values defined on these
extra points correspond to the·̃-parts of the enhancement of the vector that represents the
function on the original grid. The couplingC is optimized simply as explained in§3.4.4 of
chapter 3.


The experiments are done withMATLAB 5.3.0 on a Sun Sparc Ultra 5 workstation.
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5.5.1 Black box approach


We start with a numerical example that compares a black box approach where we apply the
Jacobi-Davidson QZ (JDQZ) method [44, 26] to the enhanced eigenvalue problem (5.7) (see
§5.2.2) with Jacobi-Davidson with enhanced correction equation and Jacobi-Davidson with
enhanced eigenvector equation for approximate solves of the correction equation.


We takeΩ = [0, 2] × [0, 1] and cover this domain by a63 × 31 grid. The domainΩ is
decomposed into two subdomainsΩ1 andΩ2 such thatΩ1 is covered by a(26 + 1) × 31
subgrid andΩ2 by a(37+1)×31 subgrid. As for the enhanced eigenvalue problem (5.7) we
can not change the matrixC during the iteration process we construct thisC only once for
theθ0 given by (5.18) for all three cases. We compute approximate solves of the correction
equation with left preconditioned GMRES(3). For all three processes the target is set to0.


Fig. 5.2 presents the results. Shown are the errors|θ−λ| of the approximate eigenvalueθ
as a function of the number of outer iterations for Jacobi-Davidson with enhanced correction
equation, Jacobi-Davidson with enhanced eigenvector equation, and JDQZ with enhanced
eigenvalue problem. It can be observed that the latter process needs far more iterations for
convergence. The bump in this convergence plot may be due to the extra eigenvalue∞ of
(5.7). A target−13 instead of0 resulted in a modest improvement, without bump, but still
the convergence is quite slow compared to the other two processes. Furthermore, in case of
the enhanced eigenvalue problem we can not adjust the coupling matrix during the process,
where for the other two processes we can. For the special preconditioner of§5.2.3 this is of
interest as the coupling matrix depends onθ: C = C(θ).
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FIGURE 5.2. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two dimensional Laplace operator on the domain[0, 1]2. Three cases are considered: Jacobi-Davidson with en-
hancement of the correction equation, Jacobi-Davidson with enhancement of the eigenvector equation, and JDQZ
applied to the enhanced eigenvalue problem. Approximate solutions of the correction equation are obtained with
left preconditioned GMRES(3). See for explanation§5.5.1.


0 2 4 6 8 10 12 14 16
10


−14


10
−12


10
−10


10
−8


10
−6


10
−4


10
−2


10
0


10
2


number of outer iterations


| θ
 −


 λ
 |


JD, enhanced correction equation
JD, enhanced eigenvector equation
JDQZ, enhanced eigenvalue problem







Different levels 126


5.5.2 Effect of the accuracy of the correction vector


For exact solution of the correction equation we know from§5.3.2.2 that the process with en-
hanced correction equation and the process with enhanced eigenvector equation are equiv-
alent. The example of§5.4.2 showed that an approximate solution of the preconditioned
correction equation affects the two processes differently. At the end of§5.4.3 it was argued
that for approximate solutions of higher accuracy this effect becomes less important. This
phenomenon is considered now by a numerical example.


HereΩ = [0, 1]2 andΩ is covered by a200×200 grid. This domain is decomposed into
8×8 square subdomains. So each subdomain is covered by a25×25 subgrid. Approximate
solutions to the correction equations (5.21) and (5.22) respectively of the two processes are
solved by right preconditioned GMRES(m). The number of GMRES-stepsm is kept fixed
for each outer iteration. For a reduction of computational overhead this approach is not rec-
ommended, but some tolerance strategy is advisable [26,§4]. Here our objective is a com-
parison of two processes with nearly the same computational costs per outer iteration. As
the difference of these processes is expected to depend on the accuracy of the approximate
solution of the correction equation, three values ofm are considered:m = 4, 8, and16.


Table 5.1 shows the convergence history of the two processes (the one with enhanced cor-
rection equation on the left, the other one with enhanced eigenvector equation on the right).
For each process we have listed: the error in the eigenvalue (columns 2 and 5) and the`2-
norm of the residual (columns 3 and 6). We checked that for the same number of outer iter-
ations both processes need nearly the same amount of flops.


For all three values ofm the error in the eigenvalue at step 2 shows no difference for both
processes. This is explained by example§5.4.2: because of the startvector both processes
compute the same correction vectort∼, this results in the same interaction matrix at step 2
from which the same approximate eigenvalueθ is determined. Note that for this argument
the accuracy oft∼ does not matter, the point is thatt∼ is not different here for the two processes.
However, form = 4 andm = 8 the values of the residual norm in column 3 and 5 differ
at step 2. Form = 4 the value is about 50 times smaller for the process with enhanced
eigenvector equation than the process with enhanced correction equation, form = 8 about
40 times, and form = 16 no difference can be observed. So for a more accurate correction
vector the difference diminishes, as anticipated in§5.4.


After step 2 also the approximate eigenvalue is different for the two processes. From the
results in the table one observes that if the correction equations are solved with GMRES(4),
that is solutions are of low accuracy, then the process with enhanced correction equation in-
deed needs significantly more outer iterations than the process with enhanced eigenvector
equation for convergence.
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TABLE 5.1. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two dimensional Laplace operator on the domain[0, 1]2. Two cases are considered: Jacobi-Davidson with en-
hancement of the correction equation and Jacobi-Davidson with enhancement of the eigenvector equation, for so-
lutions of the correction equation of different accuracy. See for explanation§5.5.2.


process with enhanced process with enhanced
correction equation eigenvector equation


step θ − λ ‖r‖2 θ − λ ‖r‖2
GMRES(4)


1 -2.61e-01 6.23e+00 -2.61e-01 6.23e+00
2 -4.87e-03 1.14e+01 -4.87e-03 2.23e-01
3 -2.24e-04 4.00e+00 -1.94e-05 1.13e-01
4 -1.49e-06 3.19e-01 -1.96e-08 1.13e-04
5 -3.85e-08 4.24e-02 -3.75e-11 6.59e-05
6 -1.34e-09 8.59e-03 -9.38e-13 1.21e-06
7 -3.35e-11 1.67e-03 -7.07e-13 1.34e-07
8 -1.22e-12 2.04e-04 -1.95e-13 4.43e-09
9 -2.03e-13 2.23e-05 -9.91e-13 1.47e-10
10 2.72e-12 2.66e-06
11 1.49e-12 2.42e-07
12 -6.44e-12 3.23e-08
13 1.84e-12 2.70e-09
14 -6.48e-12 3.42e-10


GMRES(8)
1 -2.61e-01 6.23e+00 -2.61e-01 6.23e+00
2 -5.16e-06 4.67e-01 -5.16e-06 1.12e-02
3 -6.00e-10 6.65e-03 -8.31e-11 1.59e-04
4 -2.70e-13 9.88e-05 -6.11e-13 4.78e-07
5 -2.59e-13 2.43e-06 -4.83e-13 5.01e-10
6 1.99e-13 1.61e-08
7 -3.87e-13 3.39e-10


GMRES(16)
1 -2.61e-01 6.23e+00 -2.61e-01 6.23e+00
2 -2.22e-07 1.13e-02 -2.22e-07 1.13e-02
3 -5.33e-14 9.41e-07 -6.18e-13 2.41e-09
4 -5.33e-14 1.10e-10 -5.83e-13 2.70e-11
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5.5.3 The number of subdomains


For the application of Jacobi-Davidson to a realistic large scale eigenvalue problem most
computational work is needed for the correction equation. In addition, also the storage of the
matrix and vectors may be a problem. Then a parallel approach is advisable. Computation
of approximate solutions to the correction equation with a preconditioner based on domain
decomposition makes this possible. We illustrate that in such a situation the difference be-
tween the processes with enhanced correction equation and enhanced eigenvector equation
as observed in§5.5.2 is of interest.


The experiment from§5.5.2 is considered for different decompositions of the domain
[0, 1]2 with different numbers of gridpoints (hence different gridspacings). The number of
gridpoints per subdomain is taken fixed: each subdomain is covered by a25×25 subgrid of
uniform mesh size. Such a typical situation may occur when the gridsize of a subdomain is
limited because of memory and/or computational time in a parallel computing environment.
The domain[0, 1]2 is decomposed in three different ways:


• 4× 4 (= 16) subdomains (#gridpoints = order ofA = 42 · 252 = 10.000)


• 8× 8 (= 64) subdomains (#gridpoints = order ofA = 82 · 252 = 40.000)


• 16× 16 (= 256) subdomains (#gridpoints = order ofA = 162 · 252 = 160.000)


For the fixed numberm of right preconditioned GMRES steps we have takenm = 4 and
m = 8.


Results are presented in Fig. 5.3 (4× 4 subdomains in the top picture,8× 8 subdomains
in the middle picture, and16 × 16 subdomains in the bottom picture). The pictures show
the convergence of the residual norm for the process with enhanced correction equation (in-
dicated by dashed lines) and the process with enhanced eigenvector equation (indicated by
solid lines) as a function of the number of outer iterations.


From the pictures it can be observed that given a value ofm the difference between the
processes increases when the number of subdomains increases. That is explained as follows:
for a larger number of subdomains more error components are induced by the matrix splitting
MC −NC = AC − θ I0, then for the same value ofm the approximate correction vector
contains relatively more less damped error components and these components are treated
better by the process with the enhanced eigenvector equation in the outerloop.


In case of a realistic large scale eigenvalue problem when a parallel approach is advis-
able, the outcome of this experiment suggests to use the process with enhanced eigenvector
equation.
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FIGURE 5.3. Convergence history of Jacobi-Davidson applied to the discretized eigenvalue problem for the
two dimensional Laplace operator on the domain[0, 1]2. Two cases are considered: Jacobi-Davidson with en-
hancement of the correction equation and Jacobi-Davidson with enhancement of the eigenvector equation on dif-
ferent grids and for approximate solutions of the correction equation. See for explanation§5.5.3.
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5.6 Conclusions


In this chapter three different levels of enhancement in the Jacobi-Davidson method have
been considered for the computation of eigenvalues and eigenvectors of a matrix. These
enhancements serve to incorporate a preconditioner based on domain decomposition in the
correction equation of Jacobi-Davidson.


For exact solutions of the correction equation the three approaches are equivalent. But
for approximate solutions of the correction equation that is not the case. Because of the spe-
cific structure of the preconditioner, it is optimized for damping error components of powers
of the preconditioned matrix, two levels are of importance. It is shown that for low accurate
solutions of the correction equation one of these two approaches should be preferred when
the number of subdomains is large. Such a situation may occur if a large scale eigenvalue
problem needs a massively parallel treatment.
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Samenvatting


Oplossingen van eigenwaardeproblemen zijn nodig bij onderzoek naar een breed scala van
fenomenen. Van aardbevingen tot zonnevlammen. Van kernfusie tot veranderingen in het
klimaat.


Voor het beter kunnen begrijpen en voorspellen van zo’n fenomeen worden modellen
ontwikkeld. Hiervoor worden vergelijkingen opgesteld waarvan oplossingen kenmerkend
gedrag beschrijven. In een enkel geval zijn dergelijke vergelijkingen met het blote hoofd
exact op te lossen. Realistische modellen zijn echter vaak zo complex dat een exacte oplossing
moeilijk of überhaupt niet bepaald kan worden. Dan is men aangewezen op het gebruik van
computers.


De meeste modellen bestaan uitcontinuevergelijkingen: binnen een bepaald gebied (denk
aan een bak met water) beschrijft een oplossing het gedrag (de stroming van het water) overal
(in elk punt van de bak). Voor het met een computer berekenen van een oplossing worden
de continue vergelijkingen eerstgediscretiseerd(in de bak wordt een denkbeeldig rooster
aangebracht, de continue vergelijkingen worden vervangen doordiscretevergelijkingen waar-
van oplossingen de stroming van het water op de roosterpunten beschrijven). De berekende
oplossing benadert een oplossing van de continue vergelijkingen. Deze benadering zal, in
het algemeen, beter zijn voor een fijnmaziger rooster. Een fijnmaziger rooster op hetzelfde
gebied heeft echter een groter aantal roosterpunten, met als gevolg dat het aantal te berekenen
onbekenden groter is.


Een typisch fenomeen waar een eigenwaardeprobleem in voorkomt is een systeem dat
door een aandrijvende kracht kan gaan resoneren (denk aan een brug die mee gaat trillen als
er in een bepaald tempo overheen wordt gelopen). Zo’n trilling wordt beschreven door een
eigenvectorvan het eigenwaardeprobleem. De bijbehorendeeigenwaarde, een getal, geeft
aan of de trilling gedempt of versterkt wordt. Voor bijvoorbeeld het ontwerpen van bruggen
is dit van belang om te weten: een trilling die versterkt wordt kan ervoor zorgen dat de brug
instort.


Kenmerkend voor de eigenwaardeproblemen voor dit soort fenomenen is dat ze, mede
door een fijnmazig rooster, grootschalig zijn: het aantal onbekenden in een eigenvector kan
oplopen van duizend tot ettelijke miljoenen. Gelukkig zijn meestal niet alle eigenwaarden
en/of eigenvectoren nodig. Vaak is een aantal tussenéén tot enkele tientallen voldoende.
Onder deze omstandigheden, een grootschalig eigenwaardeprobleem en een relatief klein
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aantal benodigde oplossingen, is de Jacobi-Davidson methode een zeer geschikte manier om
met de computer oplossingen te berekenen.


Voor het vinden van een oplossing projecteert de Jacobi-Davidson methode het grote
eigenwaardeprobleem op een klein eigenwaardeprobleem. De methode is erop gericht dat
steeds meer informatie over de gewenste eigenwaarden/eigenvectoren in het kleine eigen-
waardeprobleem bevat is. Met behulp van dit kleine probleem kunnen benaderingen voor
deze eigenwaarden/eigenvectoren dan vrij goedkoop berekend worden.


Voor een specifieke component van de Jacobi-Davidson methode kan de benodigde reken-
tijd echter de pan uit rijzen: de zogenaamdecorrectievergelijking. Dit is een soort stelsel
lineaire vergelijkingen. De correctie vergelijking geeft aan welke belangrijke informatie over
de gezochte eigenwaarden/eigenvectoren nog niet in het kleine eigenwaardeprobleem aan-
wezig is. In hoofdstuk 2 van dit proefschrift zijn een aantal alternatieven voor deze correctie-
vergelijking nader onderzocht.


Omdat het aantal onbekenden in de correctie vergelijking gelijk is aan het aantal onbeken-
den in een eigenvector van het grote eigenwaardeprobleem, moeten (benaderende) oplos-
singen voor deze correctie vergelijkingen op een slimme manier berekend worden om de
rekentijd laag te houden. Naaréén van die manieren heb ik in de rest van mijn proefschrift
gekeken, deze manier is gebaseerd opdomeindecompositie.


Domeindecompositie deelt het gebied waar het model beschreven wordt op in kleinere
deelgebiedjes. Er worden nieuwe continue vergelijkingen opgesteld die het gedrag op elk
deelgebiedje beschrijven. Op deze manier wordt het grote probleem, beschreven door de
continue vergelijkingen op het gehele gebied, opgedeeld in kleinere deelprobleemjes. De
som der delen is echter nog niet het geheel: er moet ook nog beschreven worden hoe de
gedragingen op de deelgebiedjes op elkaar aansluiten (denk aan de bak met water die is
opgedeeld in deelbakjes: als in een deelbakje een golf een bepaalde kant opstroomt dan zal
op een gegeven moment een (denkbeeldige) rand van het deelbakje bereikt worden, er moet
dan ook aangegeven worden hoe de golf in het aangrenzende deelbakje doorstroomt). Dit
aansluiten wordt beschreven door deinterne randvoorwaarden. Als de exacte interne rand-
voorwaarden bekend zijn dan beschrijven de continue vergelijkingen op de deelgebiedjes
samen met deze interne randvoorwaarden precies het oorspronkelijke, grote probleem. Een
oplossing voor het grote probleem kan dan berekend worden door met de computer oplos-
singen voor alle deelprobleempjes te berekenen en deze op een geschikte wijze aan elkaar te
plakken. Zo’n aanpak is praktisch waardevol bij een groot aantal onbekenden: deelproble-
men kunnen parallel, onafhankelijk en tegelijkertijd, door verschillende computers opgelost
worden.


Bovenstaande is alleen het geval als de exacte interne randvoorwaarden bekend zijn. Dit
vereist echter kennis van de oplossing voor het grote probleem. Omdat die oplossing juist
berekend moet worden is die kennis niet exact voorhanden. Om hier aan tegemoet te komen
wordt een oplossing iteratief berekend. Met behulp van de oplossing van de vorige iteratie-
stap op het ene deelgebiedje wordt op het aangrenzende deelgebiedje een schatting voor de
interne randvoorwaarden bijgesteld en een nieuwe oplossing berekend. Hiervoor moet er
elke iteratiestap gecommuniceerd worden tussen de computers die deze deelgebiedjes voor
hun rekening nemen. Het iteratieproces kan vergeleken worden met een project (het grote
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probleem oplossen) dat door een groep personen wordt uitgevoerd: elke persoon moet zijn
eigen deeltaak (een deelprobleem oplossen) uitvoeren, om te zorgen dat de deeltaken op
elkaar aansluiten moet er regelmatig tussen de personen overlegd/vergaderd (communicatie
tussen computers) worden om deeltaken op elkaar af te stemmen (bijstellen van schatting
interne randvoorwaarden). Nadeel van dit iteratieproces is dat er veel tijd kan gaan zitten
in de communicatie, zoals ook bij vergaderingen. Om het aantal iteratiestappen en daarmee
ook de hoeveelheid communicatie, terug te brengen is wat slims bedacht.


Door een uitbreiding van de onbekenden die pal naast een (denkbeeldige) rand liggen
met virtuele tegenhangers (elk deelbakje met water wordt aan elke rand een klein beetje
groter gemaakt) wordt er enige vrijheid geintroduceerd. Deze vrijheid vertaalt zich in kop-
pelingsparameters die vrij gekozen kunnen worden. Door een analyse te maken van hoe een
fout van een oplossing zich voortplant in het iteratieproces, kan bepaald worden voor welke
waarden van de koppelingsparameters het aantal benodigde iteratiestappen afneemt.


Voor de correctievergelijking van Jacobi-Davidson wordt in hoofdstuk 3 van dit proef-
schrift een dergelijke analyse verricht voor een modelprobleem. Numerieke experimenten
laten zien dat dit een scherpe analyse is. Hoofdstuk 4 legt uit hoe, met behulp van de gevon-
den waarden van de koppelingsparameters voor zo’n modelprobleem, schattingen kunnen
worden gemaakt voor meer realistische eigenwaardeproblemen uit de praktijk en het laat
zien dat deze schattingen ook effectief zijn. In hoofdstuk 5 wordt stilgestaan bij het feit
dat Jacobi-Davidson in combinatie met de domeindecompositie methode voor de correctie
vergelijking een geneste iteratieve methode is: een iteratieve methode voor het berekenen
van oplossingen voor het eigenwaardeprobleem (de “buitenlus”) met daar binnenin een iter-
atieve methode voor het berekenen van oplossingen voor de correctievergelijking (de “bin-
nenlus”). Door ook gebruik te maken van informatie van de vorige iteratiestap van de buiten-
lus in volgende binnenlus kan het aantal iteratiestappen nog meer teruggebracht worden.
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